Home >Backend Development >Python Tutorial >How Can I Apply a Function Element-Wise to Multiple Pandas DataFrame Columns?
Problem:
Given a function and a Pandas DataFrame with multiple columns, how can we apply the function element-wise to each pair of corresponding values in the columns?
Solution:
There is an efficient way to achieve this using Pandas' lambda function and apply method:
def get_sublist(sta, end): return mylist[sta:end+1] df['col_3'] = df.apply(lambda x: get_sublist(x.col_1, x.col_2), axis=1)
This applies the get_sublist function to each row of the DataFrame, using the values in the 'col_1' and 'col_2' columns as inputs. The result is a new column, 'col_3', containing the calculated sublists.
Usage:
Consider the following example:
df = pd.DataFrame({'ID':['1','2','3'], 'col_1': [0,2,3], 'col_2':[1,4,5]}) mylist = ['a','b','c','d','e','f'] # Apply the function and create a new column df['col_3'] = df.apply(lambda x: get_sublist(x.col_1, x.col_2), axis=1) print(df)
Output:
ID col_1 col_2 col_3 0 1 0 1 ['a', 'b'] 1 2 2 4 ['c', 'd', 'e'] 2 3 3 5 ['d', 'e', 'f']
The above is the detailed content of How Can I Apply a Function Element-Wise to Multiple Pandas DataFrame Columns?. For more information, please follow other related articles on the PHP Chinese website!