What to expect from this article?
This article will cover implementing Swagger in a Django rest framework project; we will work on our accounts management
Series order
Check previous articles if interested!
- AI Project from Scratch, The Idea, Alive Diary
- Prove it is feasible with Google AI Studio
- Django API Project Setup
- Django accounts management (1), registration and activation
- Django accounts management (2), login and change password
- Swagger with Django rest framework (You are here ?)
Installation and setup
The best swagger generator I found for rest-framework is drf-yasg, but I'm open to suggestions if you know a better one!
Let's start with package installation
pip install drf-yasg
now moving to our setting file
INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'drf_yasg', #new 'corsheaders', 'rest_framework', 'django_filters', 'app_account', 'app_admin', 'app_main', ] SWAGGER_SETTINGS = { 'LOGIN_URL' : '/api/account/login/', 'SECURITY_DEFINITIONS': { 'Bearer': { 'type': 'apiKey', 'name': 'Authorization', 'in': 'header' } } } REST_FRAMEWORK = { 'DEFAULT_AUTHENTICATION_CLASSES': [ 'rest_framework_simplejwt.authentication.JWTAuthentication', ], 'DEFAULT_SCHEMA_CLASS': 'rest_framework.schemas.coreapi.AutoSchema' }
alive_diary/settings.py
We have added the drf_yasg app to the installed apps and set the default authentication method to Bearer JWT token.
now to the URLs file
from django.contrib import admin from django.urls import path, include from rest_framework.documentation import include_docs_urls # new from rest_framework.schemas import get_schema_view # new from drf_yasg.views import get_schema_view # new from drf_yasg import openapi # new schema_view = get_schema_view( openapi.Info( title="Swagger API", default_version='v1', ), public=True, ) API_DESCRIPTION = 'A Web API for creating and editing.' # new API_TITLE = 'API' # new urlpatterns = [ path('admin/', admin.site.urls), path('api/account/', include('app_account.urls')), path('docs/', include_docs_urls(title=API_TITLE,description=API_DESCRIPTION)), # new path('swagger/', schema_view.with_ui('swagger',cache_timeout=0),name="swagger-schema"), # new ]
that is it! great job!
let's try it
python manage.py runserver 0.0.0.0:8555
opening http://localhost:8555/swagger/ should look like
Testing Swagger with custom ApiView
let's start by logging in using the login API view in swagger
Then, we authenticate using the "Authorize" button at the top of the swagger page. Make sure to use the access token, and don't forget the Bearer in front of it: "Bearer token..."
let's try changing the password using Swagger
it is empty! swagger wasn't able to recognize request schema, the easiest way to fit it is to use swagger auto schema
from drf_yasg.utils import swagger_auto_schema #new class AccountChangePasswordView(APIView): permission_classes = (IsAuthenticated,) renderer_classes = [CustomRenderer, BrowsableAPIRenderer] @swagger_auto_schema(request_body=ChangePasswordSerializer) # new def post(self, request, *args, **kwargs): serializer = ChangePasswordSerializer(data=request.data) if not serializer.is_valid(): raise APIException(serializer.errors) user = request.user password = serializer.validated_data.get("password") new_password = serializer.validated_data.get("new_password") if not user.check_password(password): raise APIException("invalid_password") user.set_password(new_password) user.save() return Response("success")
it looks good now
we can test all authenticated requests using Swagger now! next article will go back to the accounts app
Stay tuned ?
The above is the detailed content of Django Rest framework with Swagger. For more information, please follow other related articles on the PHP Chinese website!

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

The impact of homogeneity of arrays on performance is dual: 1) Homogeneity allows the compiler to optimize memory access and improve performance; 2) but limits type diversity, which may lead to inefficiency. In short, choosing the right data structure is crucial.

TocraftexecutablePythonscripts,followthesebestpractices:1)Addashebangline(#!/usr/bin/envpython3)tomakethescriptexecutable.2)Setpermissionswithchmod xyour_script.py.3)Organizewithacleardocstringanduseifname=="__main__":formainfunctionality.4

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac
Powerful PHP integrated development environment

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

Atom editor mac version download
The most popular open source editor
