search
HomeBackend DevelopmentPython TutorialWhy does my Keras model seem to only use part of my Fashion MNIST dataset during training, even though it\'s processing 1875 batches?

Why does my Keras model seem to only use part of my Fashion MNIST dataset during training, even though it's processing 1875 batches?

Keras Training Limitations: Resolving Partial Dataset Usage

When training a neural network model using Keras, it's crucial to ensure that the entire dataset is utilized during training. However, in some instances, users may encounter issues where only a fraction of the data is used. This article explores a specific case where a model trained on the Fashion MNIST dataset uses only a portion of the available data, providing a comprehensive explanation and solution.

The provided code snippet utilizes the model.fit() method with default parameters, which includes a batch size of 32. This means that during each iteration or epoch, the model processes 32 samples from the training dataset. In the case of the Fashion MNIST dataset, which consists of 60,000 samples, the model would need to iterate through the entire dataset multiple times to complete training. However, the output shown in the console indicates that the model is completing one epoch in 1875 iterations.

This discrepancy arises because the model.fit() method reports the number of batches processed during training, not the total number of samples. Therefore, in this case, the model is training on 1875 batches, each containing 32 samples, resulting in a total of 1875 * 32 = 60,000 samples. This means that the model is indeed utilizing the entire dataset for training, despite the misleading progress bar that displays "1875/1875" during each epoch.

To avoid confusion and accurately track the progress of the training process, it is recommended to calculate and display the number of samples processed per epoch. This can be achieved by modifying the code to print the progress as follows:

<code class="python">for epoch in range(10):
    print(f"Current Epoch: {epoch + 1}")
    for batch_idx in range(1875):
        model.train_step((train_images[batch_idx * 32 : (batch_idx + 1) * 32],
                          train_labels[batch_idx * 32 : (batch_idx + 1) * 32]))
        print(f"Batch {batch_idx + 1} processed.")</code>

Using this approach, the console will display the progress in terms of both batches and samples, providing a clear understanding of the training process and confirming that the model is utilizing the entire dataset as intended.

The above is the detailed content of Why does my Keras model seem to only use part of my Fashion MNIST dataset during training, even though it\'s processing 1875 batches?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

Python: Is it Truly Interpreted? Debunking the MythsPython: Is it Truly Interpreted? Debunking the MythsMay 12, 2025 am 12:05 AM

Pythonisnotpurelyinterpreted;itusesahybridapproachofbytecodecompilationandruntimeinterpretation.1)Pythoncompilessourcecodeintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).2)Thisprocessallowsforrapiddevelopmentbutcanimpactperformance,req

Python concatenate lists with same elementPython concatenate lists with same elementMay 11, 2025 am 12:08 AM

ToconcatenatelistsinPythonwiththesameelements,use:1)the operatortokeepduplicates,2)asettoremoveduplicates,or3)listcomprehensionforcontroloverduplicates,eachmethodhasdifferentperformanceandorderimplications.

Interpreted vs Compiled Languages: Python's PlaceInterpreted vs Compiled Languages: Python's PlaceMay 11, 2025 am 12:07 AM

Pythonisaninterpretedlanguage,offeringeaseofuseandflexibilitybutfacingperformancelimitationsincriticalapplications.1)InterpretedlanguageslikePythonexecuteline-by-line,allowingimmediatefeedbackandrapidprototyping.2)CompiledlanguageslikeC/C transformt

For and While loops: when do you use each in python?For and While loops: when do you use each in python?May 11, 2025 am 12:05 AM

Useforloopswhenthenumberofiterationsisknowninadvance,andwhileloopswheniterationsdependonacondition.1)Forloopsareidealforsequenceslikelistsorranges.2)Whileloopssuitscenarioswheretheloopcontinuesuntilaspecificconditionismet,usefulforuserinputsoralgorit

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version