search

In the world of real estate, determining property prices involves numerous factors, from location and size to amenities and market trends. Simple linear regression, a foundational technique in machine learning, provides a practical way to predict housing prices based on key features like the number of rooms or square footage.

In this article, I delve into the process of applying simple linear regression to a housing dataset, from data preprocessing and feature selection to building a model that can offer valuable price insights. Whether you’re new to data science or seeking to deepen your understanding, this project serves as a hands-on exploration of how data-driven predictions can shape smarter real estate decisions.

First things first, you start by importing your libraries:

import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
#Read from the directory where you stored the data

data  = pd.read_csv('/kaggle/input/california-housing-prices/housing.csv')
data

House_Price_Prediction

House_Price_Prediction

#Test to see if there arent any null values
data.info()

House_Price_Prediction

#Trying to draw the same number of null values
data.dropna(inplace = True)
data.info()

House_Price_Prediction

#From our data, we are going to train and test our data

from sklearn.model_selection import train_test_split

X = data.drop(['median_house_value'], axis = 1)
y = data['median_house_value']
y

House_Price_Prediction

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
#Examining correlation between x and y training data
train_data = X_train.join(y_train)
train_data

House_Price_Prediction

House_Price_Prediction

#Visualizing the above
train_data.hist(figsize=(15, 8))

House_Price_Prediction

#Encoding non-numeric columns to see if they are useful and categorical for analysis

train_data_encoded = pd.get_dummies(train_data, drop_first=True)
correlation_matrix = train_data_encoded.corr()
print(correlation_matrix)

House_Price_Prediction

House_Price_Prediction

House_Price_Prediction

train_data_encoded.corr()

House_Price_Prediction

House_Price_Prediction

House_Price_Prediction

plt.figure(figsize=(15,8))
sns.heatmap(train_data_encoded.corr(), annot=True, cmap = "inferno")

House_Price_Prediction

import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
#Read from the directory where you stored the data

data  = pd.read_csv('/kaggle/input/california-housing-prices/housing.csv')

House_Price_Prediction

data

ocean_proximity
INLAND 5183
NEAR OCEAN 2108
NEAR BAY 1783
ISLAND 5
Name: count, dtype: int64

#Test to see if there arent any null values
data.info()

House_Price_Prediction

#Trying to draw the same number of null values
data.dropna(inplace = True)
data.info()

House_Price_Prediction

House_Price_Prediction

#From our data, we are going to train and test our data

from sklearn.model_selection import train_test_split

X = data.drop(['median_house_value'], axis = 1)
y = data['median_house_value']

House_Price_Prediction

y

House_Price_Prediction

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
#Examining correlation between x and y training data
train_data = X_train.join(y_train)

House_Price_Prediction

train_data

House_Price_Prediction

#Visualizing the above
train_data.hist(figsize=(15, 8))
#Encoding non-numeric columns to see if they are useful and categorical for analysis

train_data_encoded = pd.get_dummies(train_data, drop_first=True)
correlation_matrix = train_data_encoded.corr()
print(correlation_matrix)
train_data_encoded.corr()
plt.figure(figsize=(15,8))
sns.heatmap(train_data_encoded.corr(), annot=True, cmap = "inferno")
train_data['total_rooms'] = np.log(train_data['total_rooms'] + 1)
train_data['total_bedrooms'] = np.log(train_data['total_bedrooms'] +1)
train_data['population'] = np.log(train_data['population'] + 1)
train_data['households'] = np.log(train_data['households'] + 1)
train_data.hist(figsize=(15, 8))

0.5092972905670141

#convert ocean_proximity factors into binary's using one_hot_encoding
train_data.ocean_proximity.value_counts()

House_Price_Prediction

#For each feature of the above we will then create its binary(0 or 1)
pd.get_dummies(train_data.ocean_proximity)

0.4447616558596853

#Dropping afterwards the proximity
train_data = train_data.join(pd.get_dummies(train_data.ocean_proximity)).drop(['ocean_proximity'], axis=1)

House_Price_Prediction

train_data

House_Price_Prediction

#recheck for correlation
plt.figure(figsize=(18, 8))
sns.heatmap(train_data.corr(), annot=True, cmap ='twilight')

0.5384474921332503

I would really say that training a machine is not the easiest of processes but to keep improving the results above you can add more features under the param_grid such as the min_feature and in that way your best estimator score can keep on improvimng.

If you got till this far please like and share your comment below, your opinion really matters. Thank you!??❤️

The above is the detailed content of House_Price_Prediction. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Introduction to Parallel and Concurrent Programming in PythonIntroduction to Parallel and Concurrent Programming in PythonMar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

How to Implement Your Own Data Structure in PythonHow to Implement Your Own Data Structure in PythonMar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment