Home > Article > Backend Development > How to Create a Pandas DataFrame from a Text File with Specific Patterns?
Creating a Pandas DataFrame from a Text File with Specific Patterns
You need to construct a Pandas DataFrame from a text file with the following structure:
Alabama[edit] Auburn (Auburn University)[1] Florence (University of North Alabama) Jacksonville (Jacksonville State University)[2] Livingston (University of West Alabama)[2] Montevallo (University of Montevallo)[2] Troy (Troy University)[2] Tuscaloosa (University of Alabama, Stillman College, Shelton State)[3][4] Tuskegee (Tuskegee University)[5]
The rows with "[edit]" indicate states, while the rows with "[number]" indicate regions. The task is to split the file based on these patterns and repeat the state name for each region name.
Solution:
This process will result in the desired Pandas DataFrame with "State" and "Region Name" columns.
Example:
<code class="python">import pandas as pd df = pd.read_csv("filename.txt", sep=";", names=['Region Name']) df.insert(0, 'State', df['Region Name'].str.extract('(.*)\[edit\]', expand=False).ffill()) df['Region Name'] = df['Region Name'].str.replace(r' \(.+$', '') df = df[~df['Region Name'].str.contains('\[edit\]')].reset_index(drop=True) print(df)</code>
Output:
State Region Name 0 Alabama Auburn 1 Alabama Florence 2 Alabama Jacksonville 3 Alabama Livingston 4 Alabama Montevallo 5 Alabama Troy 6 Alabama Tuscaloosa 7 Alabama Tuskegee 8 Alaska Fairbanks 9 Arizona Flagstaff 10 Arizona Tempe 11 Arizona Tucson
The above is the detailed content of How to Create a Pandas DataFrame from a Text File with Specific Patterns?. For more information, please follow other related articles on the PHP Chinese website!