search
HomeBackend DevelopmentPython TutorialHow to Cache Using Redis in Django Applications

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the benefits of caching.

Introduction to Redis and Caching

Caching significantly improves application speed by storing frequently accessed data in a readily available location (the cache) rather than repeatedly querying slower data sources like databases. Redis, an open-source, in-memory data structure store, excels as a database, cache, and message broker. It dramatically reduces database load by serving data directly from its cache.

Installing Redis

For Ubuntu users, the simplest installation involves these commands:

sudo apt-get update
sudo apt install redis

Verify the installation with:

redis-cli --version

Windows users can utilize the Windows Subsystem for Linux (WSL2). First, enable WSL2 (run as administrator):

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

Install Ubuntu from the Microsoft Store, then launch the Ubuntu terminal and execute:

sudo apt-add-repository ppa:redislabs/redis
sudo apt-get update
sudo apt-get upgrade
sudo apt-get install redis-server
sudo service redis-server restart

How to Cache Using Redis in Django Applications

Django API Example: Caching Product Data

This example demonstrates caching product data in a Django application. We'll use django-redis to interact with Redis.

Prerequisites:

  • Django
  • django-redis
  • Redis
  • loadtest (for performance testing)

Project Setup:

  1. Create a project directory and virtual environment.
  2. Activate the virtual environment and install dependencies:
pip install django==1.9 django-redis djangorestframework
  1. Create a Django project and app:
django-admin startproject django_cache
cd django_cache
python manage.py startapp store
  1. Add store and rest_framework to INSTALLED_APPS in settings.py.

  2. Create the Product model in store/models.py:

from django.db import models

class Product(models.Model):
    name = models.CharField(max_length=255)
    description = models.TextField(null=True, blank=True)
    price = models.IntegerField(null=True, blank=True)
    date_created = models.DateTimeField(auto_now_add=True, blank=True)
    date_modified = models.DateTimeField(auto_now=True, blank=True)

    def __str__(self):
        return self.name

    def to_json(self):
        return {
            'id': self.id,
            'name': self.name,
            'desc': self.description,
            'price': self.price,
            'date_created': self.date_created,
            'date_modified': self.date_modified
        }
  1. Run migrations:
python manage.py makemigrations store
python manage.py migrate
  1. Create a superuser and populate the database with sample data.

Configuring Redis in Django:

Add the following to settings.py:

CACHES = {
    'default': {
        'BACKEND': 'django_redis.cache.RedisCache',
        'LOCATION': 'redis://127.0.0.1:6379/',
        'OPTIONS': {
            'CLIENT_CLASS': 'django_redis.client.DefaultClient',
        }
    }
}

Creating Views and URLs:

Create store/views.py with endpoints for retrieving products (with and without caching):

from rest_framework.decorators import api_view
from rest_framework.response import Response
from django.core.cache import cache
from .models import Product

@api_view(['GET'])
def view_products(request):
    products = Product.objects.all()
    results = [p.to_json() for p in products]
    return Response(results)

@api_view(['GET'])
def view_cached_products(request):
    products = cache.get('products')
    if products:
        return Response(products)
    else:
        products = Product.objects.all()
        results = [p.to_json() for p in products]
        cache.set('products', results)
        return Response(results)

Create store/urls.py:

from django.urls import path
from . import views

urlpatterns = [
    path('', views.view_products),
    path('cached/', views.view_cached_products),
]

Include store/urls in your main urls.py.

Performance Testing with loadtest:

Install loadtest: sudo npm install -g loadtest

Run tests for both endpoints to compare performance. The cached endpoint should show significantly improved requests per second after the initial cache population.

Conclusion:

This tutorial illustrates the straightforward integration of Redis caching into a Django application, resulting in substantial performance gains. Redis's in-memory nature and ease of use make it an excellent choice for improving application speed and reducing server load. Remember to consider caching strategies to optimize your application's performance and resource utilization.

(Post thumbnail image generated by OpenAI DALL-E.)

The above is the detailed content of How to Cache Using Redis in Django Applications. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How do you slice a Python list?How do you slice a Python list?May 02, 2025 am 12:14 AM

SlicingaPythonlistisdoneusingthesyntaxlist[start:stop:step].Here'showitworks:1)Startistheindexofthefirstelementtoinclude.2)Stopistheindexofthefirstelementtoexclude.3)Stepistheincrementbetweenelements.It'susefulforextractingportionsoflistsandcanuseneg

What are some common operations that can be performed on NumPy arrays?What are some common operations that can be performed on NumPy arrays?May 02, 2025 am 12:09 AM

NumPyallowsforvariousoperationsonarrays:1)Basicarithmeticlikeaddition,subtraction,multiplication,anddivision;2)Advancedoperationssuchasmatrixmultiplication;3)Element-wiseoperationswithoutexplicitloops;4)Arrayindexingandslicingfordatamanipulation;5)Ag

How are arrays used in data analysis with Python?How are arrays used in data analysis with Python?May 02, 2025 am 12:09 AM

ArraysinPython,particularlythroughNumPyandPandas,areessentialfordataanalysis,offeringspeedandefficiency.1)NumPyarraysenableefficienthandlingoflargedatasetsandcomplexoperationslikemovingaverages.2)PandasextendsNumPy'scapabilitieswithDataFramesforstruc

How does the memory footprint of a list compare to the memory footprint of an array in Python?How does the memory footprint of a list compare to the memory footprint of an array in Python?May 02, 2025 am 12:08 AM

ListsandNumPyarraysinPythonhavedifferentmemoryfootprints:listsaremoreflexiblebutlessmemory-efficient,whileNumPyarraysareoptimizedfornumericaldata.1)Listsstorereferencestoobjects,withoverheadaround64byteson64-bitsystems.2)NumPyarraysstoredatacontiguou

How do you handle environment-specific configurations when deploying executable Python scripts?How do you handle environment-specific configurations when deploying executable Python scripts?May 02, 2025 am 12:07 AM

ToensurePythonscriptsbehavecorrectlyacrossdevelopment,staging,andproduction,usethesestrategies:1)Environmentvariablesforsimplesettings,2)Configurationfilesforcomplexsetups,and3)Dynamicloadingforadaptability.Eachmethodoffersuniquebenefitsandrequiresca

How do you slice a Python array?How do you slice a Python array?May 01, 2025 am 12:18 AM

The basic syntax for Python list slicing is list[start:stop:step]. 1.start is the first element index included, 2.stop is the first element index excluded, and 3.step determines the step size between elements. Slices are not only used to extract data, but also to modify and invert lists.

Under what circumstances might lists perform better than arrays?Under what circumstances might lists perform better than arrays?May 01, 2025 am 12:06 AM

Listsoutperformarraysin:1)dynamicsizingandfrequentinsertions/deletions,2)storingheterogeneousdata,and3)memoryefficiencyforsparsedata,butmayhaveslightperformancecostsincertainoperations.

How can you convert a Python array to a Python list?How can you convert a Python array to a Python list?May 01, 2025 am 12:05 AM

ToconvertaPythonarraytoalist,usethelist()constructororageneratorexpression.1)Importthearraymoduleandcreateanarray.2)Uselist(arr)or[xforxinarr]toconvertittoalist,consideringperformanceandmemoryefficiencyforlargedatasets.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Dreamweaver CS6

Dreamweaver CS6

Visual web development tools

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools