Home >Backend Development >Python Tutorial >How to Remove Duplicate Columns in a Pandas Dataframe?
Remove Duplicate Columns in a Pandas Dataframe
When dealing with dataframes that contain duplicate columns, it becomes necessary to eliminate these redundancies for effective data analysis. This article provides a comprehensive solution to remove duplicate columns in Pandas, addressing all aspects of the issue.
Duplicated Column Names
To remove columns based solely on duplicate names, a straightforward solution is:
<code class="python">df = df.loc[:,~df.columns.duplicated()].copy()</code>
This line checks for duplicate column names and retains only those that are unique.
Duplicated Column Values
If the goal is to remove columns based on duplicate values, a different approach is required without transposing the dataframe:
<code class="python">df = df.loc[:,~df.apply(lambda x: x.duplicated(),axis=1).all()].copy()</code>
This method checks for duplicated values within each column and eliminates columns where all values are duplicates.
Duplicated Indexes
To remove duplicated indexes, follow a similar approach:
<code class="python">df = df.loc[~df.index.duplicated(),:].copy()</code>
Additional Notes
The above is the detailed content of How to Remove Duplicate Columns in a Pandas Dataframe?. For more information, please follow other related articles on the PHP Chinese website!