


Performance Comparison of Tuples and Lists in Python
In Python, the choice between tuples and lists for data storage often arises. This article examines the performance differences between these two data structures, focusing on instantiation and retrieval of elements.
Tuples Generally Outperform Lists
In most scenarios, tuples exhibit superior performance over lists. This performance advantage stems from several key factors:
Constant Folding: Tuples of constants are precomputed by Python's optimizer, while lists must be built from scratch.
Reusable Nature: Running tuple(some_tuple) simply returns the same tuple directly, avoiding unnecessary copies. In contrast, list(some_list) requires a new list to be created by copying the data.
Compactness: Tuples have a fixed size, enabling more compact storage compared to lists, which over-allocate to optimize append operations.
Direct Referencing: Tuples incorporate references to their elements directly, while lists have an extra layer of indirection to an external array of pointers. This provides a speed advantage for indexed lookups and unpacking.
Instantiation
When it comes to instantiation, both tuples and lists have similar performance:
>>> import timeit >>> timeit.timeit("tuple(range(1000))") # Tuples 0.11859810000000012 >>> timeit.timeit("list(range(1000))") # Lists 0.11701059999999988
Retrieval
However, tuples exhibit faster retrieval speeds:
>>> a = (10, 20, 30) >>> timeit.timeit("a[1]") # Tuples 0.02905340000000018 >>> b = [10, 20, 30] >>> timeit.timeit("b[1]") # Lists 0.02982960000000023
Kesimpulan
While both tuples and lists serve their purpose in data storage, tuples generally offer better performance. Their constant folding capabilities, reusability, compactness, and direct element referencing provide significant advantages over lists for many applications.
The above is the detailed content of Tuples vs. Lists in Python: When Does Performance Matter More?. For more information, please follow other related articles on the PHP Chinese website!

The reasons why Python scripts cannot run on Unix systems include: 1) Insufficient permissions, using chmod xyour_script.py to grant execution permissions; 2) Shebang line is incorrect or missing, you should use #!/usr/bin/envpython; 3) The environment variables are not set properly, and you can print os.environ debugging; 4) Using the wrong Python version, you can specify the version on the Shebang line or the command line; 5) Dependency problems, using virtual environment to isolate dependencies; 6) Syntax errors, using python-mpy_compileyour_script.py to detect.

Using Python arrays is more suitable for processing large amounts of numerical data than lists. 1) Arrays save more memory, 2) Arrays are faster to operate by numerical values, 3) Arrays force type consistency, 4) Arrays are compatible with C arrays, but are not as flexible and convenient as lists.

Listsare Better ForeflexibilityandMixdatatatypes, Whilearraysares Superior Sumerical Computation Sand Larged Datasets.1) Unselable List Xibility, MixedDatatypes, andfrequent elementchanges.2) Usarray's sensory -sensical operations, Largedatasets, AndwhenMemoryEfficiency

NumPymanagesmemoryforlargearraysefficientlyusingviews,copies,andmemory-mappedfiles.1)Viewsallowslicingwithoutcopying,directlymodifyingtheoriginalarray.2)Copiescanbecreatedwiththecopy()methodforpreservingdata.3)Memory-mappedfileshandlemassivedatasetsb

ListsinPythondonotrequireimportingamodule,whilearraysfromthearraymoduledoneedanimport.1)Listsarebuilt-in,versatile,andcanholdmixeddatatypes.2)Arraysaremorememory-efficientfornumericdatabutlessflexible,requiringallelementstobeofthesametype.

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor
