


## What\'s the Difference Between Softmax and softmax_cross_entropy_with_logits in TensorFlow?
Logits in Tensorflow and the Distinction Between Softmax and softmax_cross_entropy_with_logits
In TensorFlow, the term "logits" refers to unscaled outputs of preceding layers, representing linear relative scale. They are commonly used in machine learning models to represent the pre-probabilistic activations before applying a softmax function.
Difference Between Softmax and softmax_cross_entropy_with_logits
Softmax (tf.nn.softmax) applies the softmax function to input tensors, converting log-probabilities (logits) into probabilities between 0 and 1. The output maintains the same shape as the input.
softmax_cross_entropy_with_logits (tf.nn.softmax_cross_entropy_with_logits) combines the softmax step and the calculation of cross-entropy loss in one operation. It provides a more mathematically sound approach for optimizing cross-entropy loss with softmax layers. The output shape of this function is smaller than the input, creating a summary metric that sums across the elements.
Example
Consider the following example:
<code class="python">import tensorflow as tf # Create logits logits = tf.constant([[0.1, 0.3, 0.5, 0.9]]) # Apply softmax softmax_output = tf.nn.softmax(logits) # Compute cross-entropy loss and softmax loss = tf.nn.softmax_cross_entropy_with_logits(logits, tf.one_hot([0], 4)) print(softmax_output) # [[ 0.16838508 0.205666 0.25120102 0.37474789]] print(loss) # [[0.69043917]]</code>
The softmax_output represents the probabilities for each class, while the loss value represents the cross-entropy loss between the logits and the provided labels.
When to Use softmax_cross_entropy_with_logits
It is recommended to use tf.nn.softmax_cross_entropy_with_logits for optimization scenarios where the output of your model is softmaxed. This function ensures numerical stability and eliminates the need for manual adjustments.
The above is the detailed content of ## What\'s the Difference Between Softmax and softmax_cross_entropy_with_logits in TensorFlow?. For more information, please follow other related articles on the PHP Chinese website!

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

The impact of homogeneity of arrays on performance is dual: 1) Homogeneity allows the compiler to optimize memory access and improve performance; 2) but limits type diversity, which may lead to inefficiency. In short, choosing the right data structure is crucial.

TocraftexecutablePythonscripts,followthesebestpractices:1)Addashebangline(#!/usr/bin/envpython3)tomakethescriptexecutable.2)Setpermissionswithchmod xyour_script.py.3)Organizewithacleardocstringanduseifname=="__main__":formainfunctionality.4

NumPyarraysarebetterfornumericaloperationsandmulti-dimensionaldata,whilethearraymoduleissuitableforbasic,memory-efficientarrays.1)NumPyexcelsinperformanceandfunctionalityforlargedatasetsandcomplexoperations.2)Thearraymoduleismorememory-efficientandfa

NumPyarraysarebetterforheavynumericalcomputing,whilethearraymoduleismoresuitableformemory-constrainedprojectswithsimpledatatypes.1)NumPyarraysofferversatilityandperformanceforlargedatasetsandcomplexoperations.2)Thearraymoduleislightweightandmemory-ef

ctypesallowscreatingandmanipulatingC-stylearraysinPython.1)UsectypestointerfacewithClibrariesforperformance.2)CreateC-stylearraysfornumericalcomputations.3)PassarraystoCfunctionsforefficientoperations.However,becautiousofmemorymanagement,performanceo


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Dreamweaver CS6
Visual web development tools

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

SublimeText3 Linux new version
SublimeText3 Linux latest version

SublimeText3 Mac version
God-level code editing software (SublimeText3)
