Home >Backend Development >Python Tutorial >How to Create a Custom Discrete Colorbar for a Matplotlib Scatterplot?
Custom Discrete Colorbar for Matplotlib Scatterplot
In Matplotlib, creating a discrete colorbar for a scatterplot allows you to represent data points with unique colors based on their integer tag values. To achieve this, a custom discrete colormap and a BoundaryNorm can be employed.
Let's construct a scatterplot with random x and y data, and assign integer tags ranging from 0 to 20:
<code class="python">import matplotlib.pyplot as plt import numpy as np x = np.random.rand(20) y = np.random.rand(20) tag = np.random.randint(0, 20, 20)</code>
Initially, using the default settings, the colorbar displays a continuous range of colors:
<code class="python">plt.scatter(x, y, c=tag) plt.colorbar()</code>
To create a discrete colorbar, we'll use a BoundaryNorm to define the bounds of the colormap. We also want to ensure that the tag value of 0 is represented by a gray color:
<code class="python">bounds = np.linspace(0, 20, 21) norm = mpl.colors.BoundaryNorm(bounds, cmap.N) cmaplist = [cmap(i) for i in range(cmap.N)] cmaplist[0] = (.5, .5, .5, 1.0) cmap = mpl.colors.LinearSegmentedColormap.from_list( 'Custom cmap', cmaplist, cmap.N)</code>
The updated scatterplot with the discrete colorbar looks like this:
<code class="python">scat = ax.scatter(x, y, c=tag, s=np.random.randint(100, 500, 20), cmap=cmap, norm=norm) # Add the discrete colorbar ax2 = fig.add_axes([0.95, 0.1, 0.03, 0.8]) cb = plt.colorbar.ColorbarBase(ax2, cmap=cmap, norm=norm, spacing='proportional', ticks=bounds, boundaries=bounds, format='%1i')</code>
This approach provides a well-defined discrete colorbar for your scatterplot, where each tag value is represented by a unique color, including a gray color for tag value 0.
The above is the detailed content of How to Create a Custom Discrete Colorbar for a Matplotlib Scatterplot?. For more information, please follow other related articles on the PHP Chinese website!