


Finding Peaks in Python/SciPy
Finding peaks in data is a common task in various fields, including signal processing, image analysis, and data analysis. Python provides several packages and functions for peak detection, including SciPy's scipy.signal.find_peaks function.
SciPy's Peak-Finding Algorithm
The find_peaks function takes a 1D array as input and returns the indices of the peaks. It employs a peak-finding algorithm that detects peaks based on several parameters:
- width: Minimum separation between peaks in samples.
- threshold: Minimum amplitude threshold for peak detection.
- distance: Minimum distance between consecutive peaks.
- prominence: Topographic prominence, which measures the relative height of a peak compared to its surroundings.
Prominence for Noise Rejection
The prominence parameter is particularly useful for distinguishing significant peaks from noise-induced peaks. Prominence is defined as the minimum height descent to get from the peak to any higher terrain. By setting a high prominence threshold, the algorithm can effectively filter out minor peaks caused by noise.
Example Usage
The following code demonstrates peak-finding in a noisy frequency-varying sinusoid using the find_peaks function:
<code class="python">import numpy as np import matplotlib.pyplot as plt from scipy.signal import find_peaks x = np.sin(2*np.pi*(2**np.linspace(2,10,1000))*np.arange(1000)/48000) + np.random.normal(0, 1, 1000) * 0.15 peaks_prominence, _ = find_peaks(x, prominence=1) plt.plot(x) plt.plot(peaks_prominence, x[peaks_prominence], "ob") plt.legend(['Signal', 'Peaks (prominence)']) plt.show()</code>
As demonstrated in the plot, the find_peaks function finds peaks with both high amplitude and prominence, effectively filtering out noise-induced peaks.
Other Peak-Finding Options
In addition to find_peaks, SciPy also provides other peak-finding functionality, such as peak_widths and argrelmax. These functions may be more suitable for specific applications or adjustments.
Conclusion
SciPy's scipy.signal.find_peaks function provides a robust and versatile solution for peak-finding in Python. Its adjustable parameters, including prominence, allow for customization to detect significant peaks in various types of data.
The above is the detailed content of How to Find Significant Peaks in Python Using SciPy\'s find_peaks Function?. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Dreamweaver Mac version
Visual web development tools

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

MantisBT
Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.

Atom editor mac version download
The most popular open source editor

Notepad++7.3.1
Easy-to-use and free code editor
