search
HomeBackend DevelopmentPython TutorialHow to Approximate Data with a Multi-Segment Cubic Bezier Curve Constrained by Distance and Curvature?

How to Approximate Data with a Multi-Segment Cubic Bezier Curve Constrained by Distance and Curvature?

Approximating Data with a Multi-Segment Cubic Bezier Curve with Distance and Curvature Constraints

Problem Statement:

The goal is to approximate given geographical data points with a multi-segment cubic Bezier curve under two constraints:

  1. The maximum distance between the curve and the data points cannot exceed a specified tolerance.
  2. The curvature of the curve must not exceed a certain sharpness.

Solution:

A two-step solution is proposed:

  1. Create a B-Spline Approximation:

    • Use the FITPACK library (accessed through the scipy Python binding) to generate a B-spline that least-squares fits the data points.
    • B-splines allow for specifying smoothness and provide a way to meet the curvature constraint.
  2. Convert B-Spline to Bezier Curve:

    • Use a function like the one provided in the solution text to convert the B-spline into a multi-segment Bezier curve.
    • The converted Bezier curve inherits the smoothness and curvature properties of the B-spline.

Code Example:

Here is a Python snippet demonstrating the approach:

<code class="python">import matplotlib.pyplot as plt
import numpy as np
from scipy import interpolate

# Assume the data points are stored in lists x and y.

# Create B-spline approximation
tck, u = interpolate.splprep([x, y], s=3)  # Adjust s parameter for smoothness

# Generate new parameter values for plotting
unew = np.arange(0, 1.01, 0.01)

# Evaluate B-spline at new parameter values
out = interpolate.splev(unew, tck)

# Convert B-spline to Bezier curve
bezier_points = b_spline_to_bezier_series(tck)

# Plot the data points, B-spline, and Bezier curve
plt.figure()
plt.plot(x, y, out[0], out[1], *bezier_points)  # Replace * with individual Bezier curves
plt.show()</code>

Note:

The solution prioritizes smoothness over accuracy. For tighter approximations, it may be necessary to trade off some smoothness to ensure the distance constraint is met.

The above is the detailed content of How to Approximate Data with a Multi-Segment Cubic Bezier Curve Constrained by Distance and Curvature?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What are some common reasons why a Python script might not execute on Unix?What are some common reasons why a Python script might not execute on Unix?Apr 28, 2025 am 12:18 AM

The reasons why Python scripts cannot run on Unix systems include: 1) Insufficient permissions, using chmod xyour_script.py to grant execution permissions; 2) Shebang line is incorrect or missing, you should use #!/usr/bin/envpython; 3) The environment variables are not set properly, and you can print os.environ debugging; 4) Using the wrong Python version, you can specify the version on the Shebang line or the command line; 5) Dependency problems, using virtual environment to isolate dependencies; 6) Syntax errors, using python-mpy_compileyour_script.py to detect.

Give an example of a scenario where using a Python array would be more appropriate than using a list.Give an example of a scenario where using a Python array would be more appropriate than using a list.Apr 28, 2025 am 12:15 AM

Using Python arrays is more suitable for processing large amounts of numerical data than lists. 1) Arrays save more memory, 2) Arrays are faster to operate by numerical values, 3) Arrays force type consistency, 4) Arrays are compatible with C arrays, but are not as flexible and convenient as lists.

What are the performance implications of using lists versus arrays in Python?What are the performance implications of using lists versus arrays in Python?Apr 28, 2025 am 12:10 AM

Listsare Better ForeflexibilityandMixdatatatypes, Whilearraysares Superior Sumerical Computation Sand Larged Datasets.1) Unselable List Xibility, MixedDatatypes, andfrequent elementchanges.2) Usarray's sensory -sensical operations, Largedatasets, AndwhenMemoryEfficiency

How does NumPy handle memory management for large arrays?How does NumPy handle memory management for large arrays?Apr 28, 2025 am 12:07 AM

NumPymanagesmemoryforlargearraysefficientlyusingviews,copies,andmemory-mappedfiles.1)Viewsallowslicingwithoutcopying,directlymodifyingtheoriginalarray.2)Copiescanbecreatedwiththecopy()methodforpreservingdata.3)Memory-mappedfileshandlemassivedatasetsb

Which requires importing a module: lists or arrays?Which requires importing a module: lists or arrays?Apr 28, 2025 am 12:06 AM

ListsinPythondonotrequireimportingamodule,whilearraysfromthearraymoduledoneedanimport.1)Listsarebuilt-in,versatile,andcanholdmixeddatatypes.2)Arraysaremorememory-efficientfornumericdatabutlessflexible,requiringallelementstobeofthesametype.

What data types can be stored in a Python array?What data types can be stored in a Python array?Apr 27, 2025 am 12:11 AM

Pythonlistscanstoreanydatatype,arraymodulearraysstoreonetype,andNumPyarraysarefornumericalcomputations.1)Listsareversatilebutlessmemory-efficient.2)Arraymodulearraysarememory-efficientforhomogeneousdata.3)NumPyarraysareoptimizedforperformanceinscient

What happens if you try to store a value of the wrong data type in a Python array?What happens if you try to store a value of the wrong data type in a Python array?Apr 27, 2025 am 12:10 AM

WhenyouattempttostoreavalueofthewrongdatatypeinaPythonarray,you'llencounteraTypeError.Thisisduetothearraymodule'sstricttypeenforcement,whichrequiresallelementstobeofthesametypeasspecifiedbythetypecode.Forperformancereasons,arraysaremoreefficientthanl

Which is part of the Python standard library: lists or arrays?Which is part of the Python standard library: lists or arrays?Apr 27, 2025 am 12:03 AM

Pythonlistsarepartofthestandardlibrary,whilearraysarenot.Listsarebuilt-in,versatile,andusedforstoringcollections,whereasarraysareprovidedbythearraymoduleandlesscommonlyusedduetolimitedfunctionality.

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Safe Exam Browser

Safe Exam Browser

Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

SecLists

SecLists

SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.