Author: Trix Cyrus
Waymap Pentesting tool: Click Here
TrixSec Github: Click Here
In Part 1, we explored how to use Python to automate file management, web scraping, sending emails, Google Sheets, and system monitoring. In Part 2, we will continue by covering more advanced tasks like automating APIs, scheduling scripts, and integrating automation with third-party services.
7. Automating API Requests
Many web services provide APIs to interact with their platforms programmatically. Using the requests library, you can easily automate tasks like fetching data from APIs, posting updates, or performing CRUD operations on cloud services.
import requests # OpenWeatherMap API configuration api_key = 'your_api_key' city = 'New York' url = f'http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}' # Send a GET request to fetch weather data response = requests.get(url) data = response.json() # Extract temperature information temperature = data['main']['temp'] weather = data['weather'][0]['description'] print(f"Temperature: {temperature}°K") print(f"Weather: {weather}")
This script fetches the current weather data for a specified city from the OpenWeatherMap API and displays it.
8. Scheduling Tasks with Python
Sometimes you need to automate tasks to run at specific times or intervals. Python's schedule library makes it easy to set up jobs that run automatically at certain times.
import schedule import time # Task function to be executed def task(): print("Executing scheduled task...") # Schedule the task to run every day at 9 AM schedule.every().day.at("09:00").do(task) # Keep the script running to check the schedule while True: schedule.run_pending() time.sleep(1)
This script schedules a task to run every day at 9 AM, using a simple scheduling loop to keep the task running.
9. Automating Database Operations
Python can be used to interact with databases, automate data entry, and perform operations like reading, updating, and deleting records. The sqlite3 module allows you to manage SQLite databases, while other libraries (like psycopg2 or MySQLdb) work with PostgreSQL and MySQL.
import sqlite3 # Connect to SQLite database conn = sqlite3.connect('tasks.db') # Create a cursor object to execute SQL commands cur = conn.cursor() # Create a table for storing tasks cur.execute('''CREATE TABLE IF NOT EXISTS tasks (id INTEGER PRIMARY KEY, task_name TEXT, status TEXT)''') # Insert a new task cur.execute("INSERT INTO tasks (task_name, status) VALUES ('Complete automation script', 'Pending')") # Commit changes and close the connection conn.commit() conn.close()
This script creates an SQLite database, adds a "tasks" table, and inserts a new task into the database.
10. Automating Excel File Management
Python, along with the openpyxl or pandas libraries, can be used to automate reading, writing, and modifying Excel files. This is especially useful for automating data analysis and reporting tasks.
import pandas as pd # Read Excel file df = pd.read_excel('data.xlsx') # Perform some operation on the data df['Total'] = df['Price'] * df['Quantity'] # Write the modified data back to a new Excel file df.to_excel('updated_data.xlsx', index=False)
This script reads an Excel file, performs a calculation on the data, and writes the updated data to a new file.
11. Automating Browser Interactions with Selenium
Using Selenium, Python can automate interactions with web browsers such as logging into accounts, filling forms, and performing repetitive web tasks.
from selenium import webdriver from selenium.webdriver.common.keys import Keys # Set up the browser driver driver = webdriver.Chrome() # Open the login page driver.get('https://example.com/login') # Locate the username and password fields, fill them in, and log in username = driver.find_element_by_name('username') password = driver.find_element_by_name('password') username.send_keys('your_username') password.send_keys('your_password') password.send_keys(Keys.RETURN) # Close the browser driver.quit()
This script opens a web browser, navigates to a login page, fills in the credentials, and logs in automatically.
12. Automating Cloud Services
Python integrates well with cloud services like AWS, Google Cloud, and Azure. Using the boto3 library, you can automate tasks like managing S3 buckets, EC2 instances, and Lambda functions in AWS.
import requests # OpenWeatherMap API configuration api_key = 'your_api_key' city = 'New York' url = f'http://api.openweathermap.org/data/2.5/weather?q={city}&appid={api_key}' # Send a GET request to fetch weather data response = requests.get(url) data = response.json() # Extract temperature information temperature = data['main']['temp'] weather = data['weather'][0]['description'] print(f"Temperature: {temperature}°K") print(f"Weather: {weather}")
This script connects to AWS S3, lists all buckets, creates a new bucket, and uploads a file to it.
13. Automating PDF Manipulation
Using the PyPDF2 library, Python can automate tasks like merging, splitting, and extracting text from PDF files.
import schedule import time # Task function to be executed def task(): print("Executing scheduled task...") # Schedule the task to run every day at 9 AM schedule.every().day.at("09:00").do(task) # Keep the script running to check the schedule while True: schedule.run_pending() time.sleep(1)
This script merges multiple PDF files into a single file.
~Trixsec
The above is the detailed content of How to Automate Everyday Tasks with Python (Part 2). For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
