Counting Unique Values in Groups with Pandas
When working with datasets containing multiple variables grouped into categories, it often becomes necessary to determine the number of unique values associated with each group. Pandas, a widely used Python library for data manipulation, offers several methods to count unique values within groups.
One common need is to count the number of unique identifiers within each domain. Given a data frame with columns for ID and domain, we seek to obtain a result that displays the count of unique IDs for each domain.
Specifically, considering the data:
ID domain 0 123 vk.com 1 123 vk.com 2 123 twitter.com 3 456 vk.com 4 456 facebook.com 5 456 vk.com 6 456 google.com 7 789 twitter.com 8 789 vk.com
We aim to achieve the following output:
domain count vk.com 3 twitter.com 2 facebook.com 1 google.com 1
To achieve this, we can employ the nunique() function within the Pandas groupby operation. By grouping the data frame by the domain column and subsequently applying the nunique() function to the ID column, we obtain the count of unique values for each domain. The resulting data frame will contain the desired result:
df = df.groupby(['domain', 'ID']).nunique() print(df)
However, in certain scenarios, the data may contain characters such as single quotes within the domain names. To handle such cases, we can utilize the str.strip("'") function to remove the single quotes before grouping and counting. This can be implemented as:
df = df.ID.groupby([df.domain.str.strip("'")]).nunique() print(df)
Alternatively, we can simplify the code by chaining the str.strip("'") function within the groupby operation:
df.groupby(df.domain.str.strip("'"))['ID'].nunique()
To retain the domain column in the resulting data frame, we can use the agg() function with the as_index=False parameter:
df = df.groupby(by='domain', as_index=False).agg({'ID': pd.Series.nunique}) print(df)
This method will return a data frame with both the domain and count columns, where count represents the number of unique IDs associated with each domain.
The above is the detailed content of How to Count Unique Values in Groups with Pandas?. For more information, please follow other related articles on the PHP Chinese website!

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

Pythonisnotpurelyinterpreted;itusesahybridapproachofbytecodecompilationandruntimeinterpretation.1)Pythoncompilessourcecodeintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).2)Thisprocessallowsforrapiddevelopmentbutcanimpactperformance,req

ToconcatenatelistsinPythonwiththesameelements,use:1)the operatortokeepduplicates,2)asettoremoveduplicates,or3)listcomprehensionforcontroloverduplicates,eachmethodhasdifferentperformanceandorderimplications.

Pythonisaninterpretedlanguage,offeringeaseofuseandflexibilitybutfacingperformancelimitationsincriticalapplications.1)InterpretedlanguageslikePythonexecuteline-by-line,allowingimmediatefeedbackandrapidprototyping.2)CompiledlanguageslikeC/C transformt

Useforloopswhenthenumberofiterationsisknowninadvance,andwhileloopswheniterationsdependonacondition.1)Forloopsareidealforsequenceslikelistsorranges.2)Whileloopssuitscenarioswheretheloopcontinuesuntilaspecificconditionismet,usefulforuserinputsoralgorit


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

Video Face Swap
Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 English version
Recommended: Win version, supports code prompts!

Safe Exam Browser
Safe Exam Browser is a secure browser environment for taking online exams securely. This software turns any computer into a secure workstation. It controls access to any utility and prevents students from using unauthorized resources.

SecLists
SecLists is the ultimate security tester's companion. It is a collection of various types of lists that are frequently used during security assessments, all in one place. SecLists helps make security testing more efficient and productive by conveniently providing all the lists a security tester might need. List types include usernames, passwords, URLs, fuzzing payloads, sensitive data patterns, web shells, and more. The tester can simply pull this repository onto a new test machine and he will have access to every type of list he needs.

Notepad++7.3.1
Easy-to-use and free code editor

PhpStorm Mac version
The latest (2018.2.1) professional PHP integrated development tool
