search
HomeBackend DevelopmentPython TutorialCaching in FastAPI: Unlocking High-Performance Development:

In der heutigen digitalen Welt ist jede Aktion – sei es das Wischen in einer Dating-App oder das Abschließen eines Kaufs – auf APIs angewiesen, die hinter den Kulissen effizient arbeiten. Als Back-End-Entwickler wissen wir, dass jede Millisekunde zählt. Aber wie können wir dafür sorgen, dass APIs schneller reagieren? Die Antwort liegt im Caching.

Caching ist eine Technik, die häufig aufgerufene Daten im Speicher speichert und es APIs ermöglicht, sofort zu reagieren, anstatt jedes Mal eine langsamere Datenbank abzufragen. Stellen Sie sich das so vor, als ob Sie wichtige Zutaten (Salz, Pfeffer, Öl) auf Ihrer Küchenarbeitsplatte aufbewahren, anstatt sie jedes Mal, wenn Sie kochen, aus der Speisekammer zu holen – das spart Zeit und macht den Prozess effizienter. Ebenso reduziert Caching die API-Antwortzeiten, indem häufig angeforderte Daten an einem schnellen, zugänglichen Ort wie Redis gespeichert werden.

Erforderliche Bibliotheken müssen installiert werden

Um eine Verbindung mit Redis Cache mit FastAPI herzustellen, müssen die folgenden Bibliotheken vorinstalliert sein.

pip install fastapi uvicorn aiocache pydantic

Pydantic dient zum Erstellen von Datenbanktabellen und -strukturen. aiocache führt asynchrone Vorgänge im Cache aus. uvicorn ist für den Serverbetrieb verantwortlich.

Redis-Einrichtung und -Verifizierung:

Eine direkte Einrichtung von Redis in einem Windows-System ist derzeit nicht möglich. Daher muss es im Windows-Subsystem für Linux eingerichtet und ausgeführt werden. Anweisungen zur Installation von WSL finden Sie unten

Caching in FastAPI: Unlocking High-Performance Development:

WSL installieren | Microsoft Learn

Installieren Sie das Windows-Subsystem für Linux mit dem Befehl wsl --install. Verwenden Sie ein Bash-Terminal auf Ihrem Windows-Computer, auf dem Ihre bevorzugte Linux-Distribution ausgeführt wird – Ubuntu, Debian, SUSE, Kali, Fedora, Pengwin, Alpine und mehr sind verfügbar.

learn.microsoft.com

Post installing WSL, the following commands are required to install Redis

sudo apt update
sudo apt install redis-server
sudo systemctl start redis

To test Redis server connectivity, the following command is used

redis-cli

After this command, it will enter into a virtual terminal of port 6379. In that terminal, the redis commands can be typed and tested.

Setting Up the FastAPI Application

Let’s create a simple FastAPI app that retrieves user information and caches it for future requests. We will use Redis for storing cached responses.

Step 1: Define the Pydantic Model for User Data

We’ll use Pydantic to define our User model, which represents the structure of the API response.

from pydantic import BaseModel

class User(BaseModel):
    id: int
    name: str
    email: str
    age: int

Step 2: Create a Caching Decorator

To avoid repeating the caching logic for each endpoint, we’ll create a reusable caching decorator using the aiocache library. This decorator will attempt to retrieve the response from Redis before calling the actual function.

import json
from functools import wraps
from aiocache import Cache
from fastapi import HTTPException

def cache_response(ttl: int = 60, namespace: str = "main"):
    """
    Caching decorator for FastAPI endpoints.

    ttl: Time to live for the cache in seconds.
    namespace: Namespace for cache keys in Redis.
    """
    def decorator(func):
        @wraps(func)
        async def wrapper(*args, **kwargs):
            user_id = kwargs.get('user_id') or args[0]  # Assuming the user ID is the first argument
            cache_key = f"{namespace}:user:{user_id}"

            cache = Cache.REDIS(endpoint="localhost", port=6379, namespace=namespace)

            # Try to retrieve data from cache
            cached_value = await cache.get(cache_key)
            if cached_value:
                return json.loads(cached_value)  # Return cached data

            # Call the actual function if cache is not hit
            response = await func(*args, **kwargs)

            try:
                # Store the response in Redis with a TTL
                await cache.set(cache_key, json.dumps(response), ttl=ttl)
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error caching data: {e}")

            return response
        return wrapper
    return decorator

Step 3: Implement a FastAPI Route for User Details

We’ll now implement a FastAPI route that retrieves user information based on a user ID. The response will be cached using Redis for faster access in subsequent requests.

from fastapi import FastAPI

app = FastAPI()

# Sample data representing users in a database
users_db = {
    1: {"id": 1, "name": "Alice", "email": "alice@example.com", "age": 25},
    2: {"id": 2, "name": "Bob", "email": "bob@example.com", "age": 30},
    3: {"id": 3, "name": "Charlie", "email": "charlie@example.com", "age": 22},
}

@app.get("/users/{user_id}")
@cache_response(ttl=120, namespace="users")
async def get_user_details(user_id: int):
    # Simulate a database call by retrieving data from users_db
    user = users_db.get(user_id)
    if not user:
        raise HTTPException(status_code=404, detail="User not found")

    return user

Step 4: Run the Application

Start your FastAPI application by running:

uvicorn main:app --reload

Now, you can test the API by fetching user details via:

http://127.0.0.1:8000/users/1

The first request will fetch the data from the users_db, but subsequent requests will retrieve the data from Redis.

Testing the Cache

You can verify the cache by inspecting the keys stored in Redis. Open the Redis CLI:

redis-cli
KEYS *

You will get all keys that have been stored in the Redis till TTL.

How Caching Works in This Example

First Request

: When the user data is requested for the first time, the API fetches it from the database (users_db) and stores the result in Redis with a time-to-live (TTL) of 120 seconds.

Subsequent Requests:

Any subsequent requests for the same user within the TTL period are served directly from Redis, making the response faster and reducing the load on the database.

TTL (Time to Live):

After 120 seconds, the cache entry expires, and the data is fetched from the database again on the next request, refreshing the cache.

Conclusion

In this tutorial, we’ve demonstrated how to implement Redis caching in a FastAPI application using a simple user details example. By caching API responses, you can significantly improve the performance of your application, particularly for data that doesn't change frequently.

Please do upvote and share if you find this article useful.

The above is the detailed content of Caching in FastAPI: Unlocking High-Performance Development:. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and Deserialization of Python Objects: Part 1Serialization and Deserialization of Python Objects: Part 1Mar 08, 2025 am 09:39 AM

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Mathematical Modules in Python: StatisticsMathematical Modules in Python: StatisticsMar 09, 2025 am 11:40 AM

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

Professional Error Handling With PythonProfessional Error Handling With PythonMar 04, 2025 am 10:58 AM

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

What are some popular Python libraries and their uses?What are some popular Python libraries and their uses?Mar 21, 2025 pm 06:46 PM

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

Scraping Webpages in Python With Beautiful Soup: Search and DOM ModificationScraping Webpages in Python With Beautiful Soup: Search and DOM ModificationMar 08, 2025 am 10:36 AM

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

Repo: How To Revive Teammates
1 months agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

Zend Studio 13.0.1

Zend Studio 13.0.1

Powerful PHP integrated development environment

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.