In der heutigen digitalen Welt ist jede Aktion – sei es das Wischen in einer Dating-App oder das Abschließen eines Kaufs – auf APIs angewiesen, die hinter den Kulissen effizient arbeiten. Als Back-End-Entwickler wissen wir, dass jede Millisekunde zählt. Aber wie können wir dafür sorgen, dass APIs schneller reagieren? Die Antwort liegt im Caching.
Caching ist eine Technik, die häufig aufgerufene Daten im Speicher speichert und es APIs ermöglicht, sofort zu reagieren, anstatt jedes Mal eine langsamere Datenbank abzufragen. Stellen Sie sich das so vor, als ob Sie wichtige Zutaten (Salz, Pfeffer, Öl) auf Ihrer Küchenarbeitsplatte aufbewahren, anstatt sie jedes Mal, wenn Sie kochen, aus der Speisekammer zu holen – das spart Zeit und macht den Prozess effizienter. Ebenso reduziert Caching die API-Antwortzeiten, indem häufig angeforderte Daten an einem schnellen, zugänglichen Ort wie Redis gespeichert werden.
Erforderliche Bibliotheken müssen installiert werden
Um eine Verbindung mit Redis Cache mit FastAPI herzustellen, müssen die folgenden Bibliotheken vorinstalliert sein.
pip install fastapi uvicorn aiocache pydantic
Pydantic dient zum Erstellen von Datenbanktabellen und -strukturen. aiocache führt asynchrone Vorgänge im Cache aus. uvicorn ist für den Serverbetrieb verantwortlich.
Redis-Einrichtung und -Verifizierung:
Eine direkte Einrichtung von Redis in einem Windows-System ist derzeit nicht möglich. Daher muss es im Windows-Subsystem für Linux eingerichtet und ausgeführt werden. Anweisungen zur Installation von WSL finden Sie unten
Post installing WSL, the following commands are required to install Redis
sudo apt update sudo apt install redis-server sudo systemctl start redis
To test Redis server connectivity, the following command is used
redis-cli
After this command, it will enter into a virtual terminal of port 6379. In that terminal, the redis commands can be typed and tested.
Setting Up the FastAPI Application
Let’s create a simple FastAPI app that retrieves user information and caches it for future requests. We will use Redis for storing cached responses.
Step 1: Define the Pydantic Model for User Data
We’ll use Pydantic to define our User model, which represents the structure of the API response.
from pydantic import BaseModel class User(BaseModel): id: int name: str email: str age: int
Step 2: Create a Caching Decorator
To avoid repeating the caching logic for each endpoint, we’ll create a reusable caching decorator using the aiocache library. This decorator will attempt to retrieve the response from Redis before calling the actual function.
import json from functools import wraps from aiocache import Cache from fastapi import HTTPException def cache_response(ttl: int = 60, namespace: str = "main"): """ Caching decorator for FastAPI endpoints. ttl: Time to live for the cache in seconds. namespace: Namespace for cache keys in Redis. """ def decorator(func): @wraps(func) async def wrapper(*args, **kwargs): user_id = kwargs.get('user_id') or args[0] # Assuming the user ID is the first argument cache_key = f"{namespace}:user:{user_id}" cache = Cache.REDIS(endpoint="localhost", port=6379, namespace=namespace) # Try to retrieve data from cache cached_value = await cache.get(cache_key) if cached_value: return json.loads(cached_value) # Return cached data # Call the actual function if cache is not hit response = await func(*args, **kwargs) try: # Store the response in Redis with a TTL await cache.set(cache_key, json.dumps(response), ttl=ttl) except Exception as e: raise HTTPException(status_code=500, detail=f"Error caching data: {e}") return response return wrapper return decorator
Step 3: Implement a FastAPI Route for User Details
We’ll now implement a FastAPI route that retrieves user information based on a user ID. The response will be cached using Redis for faster access in subsequent requests.
from fastapi import FastAPI app = FastAPI() # Sample data representing users in a database users_db = { 1: {"id": 1, "name": "Alice", "email": "alice@example.com", "age": 25}, 2: {"id": 2, "name": "Bob", "email": "bob@example.com", "age": 30}, 3: {"id": 3, "name": "Charlie", "email": "charlie@example.com", "age": 22}, } @app.get("/users/{user_id}") @cache_response(ttl=120, namespace="users") async def get_user_details(user_id: int): # Simulate a database call by retrieving data from users_db user = users_db.get(user_id) if not user: raise HTTPException(status_code=404, detail="User not found") return user
Step 4: Run the Application
Start your FastAPI application by running:
uvicorn main:app --reload
Now, you can test the API by fetching user details via:
http://127.0.0.1:8000/users/1
The first request will fetch the data from the users_db, but subsequent requests will retrieve the data from Redis.
Testing the Cache
You can verify the cache by inspecting the keys stored in Redis. Open the Redis CLI:
redis-cli KEYS *
You will get all keys that have been stored in the Redis till TTL.
How Caching Works in This Example
First Request
: When the user data is requested for the first time, the API fetches it from the database (users_db) and stores the result in Redis with a time-to-live (TTL) of 120 seconds.
Subsequent Requests:
Any subsequent requests for the same user within the TTL period are served directly from Redis, making the response faster and reducing the load on the database.
TTL (Time to Live):
After 120 seconds, the cache entry expires, and the data is fetched from the database again on the next request, refreshing the cache.
Conclusion
In this tutorial, we’ve demonstrated how to implement Redis caching in a FastAPI application using a simple user details example. By caching API responses, you can significantly improve the performance of your application, particularly for data that doesn't change frequently.
Please do upvote and share if you find this article useful.
The above is the detailed content of Caching in FastAPI: Unlocking High-Performance Development:. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Serialization and deserialization of Python objects are key aspects of any non-trivial program. If you save something to a Python file, you do object serialization and deserialization if you read the configuration file, or if you respond to an HTTP request. In a sense, serialization and deserialization are the most boring things in the world. Who cares about all these formats and protocols? You want to persist or stream some Python objects and retrieve them in full at a later time. This is a great way to see the world on a conceptual level. However, on a practical level, the serialization scheme, format or protocol you choose may determine the speed, security, freedom of maintenance status, and other aspects of the program

Python's statistics module provides powerful data statistical analysis capabilities to help us quickly understand the overall characteristics of data, such as biostatistics and business analysis. Instead of looking at data points one by one, just look at statistics such as mean or variance to discover trends and features in the original data that may be ignored, and compare large datasets more easily and effectively. This tutorial will explain how to calculate the mean and measure the degree of dispersion of the dataset. Unless otherwise stated, all functions in this module support the calculation of the mean() function instead of simply summing the average. Floating point numbers can also be used. import random import statistics from fracti

In this tutorial you'll learn how to handle error conditions in Python from a whole system point of view. Error handling is a critical aspect of design, and it crosses from the lowest levels (sometimes the hardware) all the way to the end users. If y

The article discusses popular Python libraries like NumPy, Pandas, Matplotlib, Scikit-learn, TensorFlow, Django, Flask, and Requests, detailing their uses in scientific computing, data analysis, visualization, machine learning, web development, and H

This tutorial builds upon the previous introduction to Beautiful Soup, focusing on DOM manipulation beyond simple tree navigation. We'll explore efficient search methods and techniques for modifying HTML structure. One common DOM search method is ex


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

Zend Studio 13.0.1
Powerful PHP integrated development environment

Notepad++7.3.1
Easy-to-use and free code editor

Atom editor mac version download
The most popular open source editor

SAP NetWeaver Server Adapter for Eclipse
Integrate Eclipse with SAP NetWeaver application server.

MinGW - Minimalist GNU for Windows
This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.
