search
HomeBackend DevelopmentPython TutorialPolars vs. Pandas A New Era of Dataframes in Python ?

Polars vs. Pandas A New Era of Dataframes in Python ?

Polars vs. Pandas: What's the Difference?

If you've been keeping up with recent Python developments, you’ve probably heard of Polars, a new library for working with data. While pandas has been the go-to library for a long time, Polars is making waves, especially for handling big datasets. So, what’s the big deal with Polars? How is it different from pandas? Let’s break it down.


What is Polars?

Polars is a free, open-source library built in Rust (a fast, modern programming language). It’s designed to help Python developers handle data in a faster, more efficient way. Think of it as an alternative to pandas one that shines when you're working with really large datasets that pandas might struggle with.


Why Was Polars Created?

Pandas has been around for years, and many people still love using it. But as data has gotten bigger and more complex, pandas has started to show some weaknesses. Ritchie Vink, the creator of Polars, noticed these issues and decided to create something faster and more efficient. Even Wes McKinney, the creator of pandas, admitted in a blog post titled "10 Things I Hate About pandas" that pandas could use some improvement, especially with large datasets.

That’s where Polars comes in it’s designed to be blazing fast and memory efficient, two things pandas struggles with when handling big data.


Key Differences: Polars vs. Pandas

1. Speed

Polars is really fast. In fact, some benchmarks show that Polars can be up to 5–10 times faster than pandas when performing common operations, like filtering or grouping data. This speed difference is especially noticeable when you’re working with large datasets.

2. Memory Usage

Polars is much more efficient when it comes to memory. It uses about 5 to 10 times less memory than pandas, which means you can work with much larger datasets without running into memory issues.

3. Lazy Execution

Polars uses something called lazy execution, which means it doesn’t immediately run each operation as you write it. Instead, it waits until you’ve written a series of operations, then runs them all at once. This helps it optimize and run things faster. Pandas, on the other hand, runs every operation immediately, which can be slower for big tasks.

4. Multithreading

Polars can use multiple CPU cores at the same time to process data, which makes it even faster for big datasets. Pandas is mostly single threaded, meaning it can only use one CPU core at a time, which slows things down, especially with large datasets.


Why is Polars So Fast?

Polars is fast for a couple of reasons:

  • It’s built in Rust, a programming language known for its speed and safety, making it super efficient.
  • It uses Apache Arrow, a special way of storing data in memory that makes it easier and faster to work with across different programming languages.

This combination of Rust and Apache Arrow gives Polars the edge over pandas when it comes to speed and memory use.


Strengths and Limitations of Pandas

While Polars is great for big data, pandas still has its place. Pandas works really well with small to medium-sized datasets and has been around for so long that it’s got tons of features and a huge community. So, if you’re not working with huge datasets, pandas might still be your best option.

However, as your datasets get larger, pandas tends to use more memory and gets slower, making Polars a better choice in those situations.


When Should You Use Polars?

You should consider using Polars if:

  • Anda sedang bekerja dengan set data yang besar (berjuta-juta atau berbilion baris).
  • Anda memerlukan kelajuan dan prestasi untuk menyelesaikan tugasan anda dengan cepat.
  • Anda mempunyai kekangan ingatan dan perlu menjimatkan jumlah RAM yang anda gunakan.

Kesimpulan

Kedua-dua Polar dan panda mempunyai kekuatan mereka. Jika anda bekerja dengan set data kecil hingga sederhana, panda masih merupakan alat yang hebat. Tetapi jika anda berurusan dengan set data yang besar dan memerlukan sesuatu yang lebih pantas dan lebih cekap memori, Polar pastinya berbaloi untuk dicuba. Peningkatan prestasinya, terima kasih kepada Rust dan Apache Arrow, menjadikannya pilihan yang hebat untuk tugasan intensif data.

Memandangkan Python terus berkembang, Polars mungkin menjadi alat goto baharu untuk mengendalikan data besar.

Selamat Pengekodan ? ?

The above is the detailed content of Polars vs. Pandas A New Era of Dataframes in Python ?. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What are some common operations that can be performed on Python arrays?What are some common operations that can be performed on Python arrays?Apr 26, 2025 am 12:22 AM

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

In what types of applications are NumPy arrays commonly used?In what types of applications are NumPy arrays commonly used?Apr 26, 2025 am 12:13 AM

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

When would you choose to use an array over a list in Python?When would you choose to use an array over a list in Python?Apr 26, 2025 am 12:12 AM

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

Are all list operations supported by arrays, and vice versa? Why or why not?Are all list operations supported by arrays, and vice versa? Why or why not?Apr 26, 2025 am 12:05 AM

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

How do you access elements in a Python list?How do you access elements in a Python list?Apr 26, 2025 am 12:03 AM

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

How are arrays used in scientific computing with Python?How are arrays used in scientific computing with Python?Apr 25, 2025 am 12:28 AM

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

How do you handle different Python versions on the same system?How do you handle different Python versions on the same system?Apr 25, 2025 am 12:24 AM

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

What are some advantages of using NumPy arrays over standard Python arrays?What are some advantages of using NumPy arrays over standard Python arrays?Apr 25, 2025 am 12:21 AM

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools

Atom editor mac version download

Atom editor mac version download

The most popular open source editor

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.