Comprehensive Python Data Structures Cheat sheet
Table of Contents
- Lists
- Tuples
- Sets
- Dictionaries
- Strings
- Arrays
- Stacks
- Queues
- Linked Lists
- Trees
- Heaps
- Graphs
- Advanced Data Structures
Lists
Lists are ordered, mutable sequences.
Creation
empty_list = [] list_with_items = [1, 2, 3] list_from_iterable = list("abc") list_comprehension = [x for x in range(10) if x % 2 == 0]
Common Operations
# Accessing elements first_item = my_list[0] last_item = my_list[-1] # Slicing subset = my_list[1:4] # Elements 1 to 3 reversed_list = my_list[::-1] # Adding elements my_list.append(4) # Add to end my_list.insert(0, 0) # Insert at specific index my_list.extend([5, 6, 7]) # Add multiple elements # Removing elements removed_item = my_list.pop() # Remove and return last item my_list.remove(3) # Remove first occurrence of 3 del my_list[0] # Remove item at index 0 # Other operations length = len(my_list) index = my_list.index(4) # Find index of first occurrence of 4 count = my_list.count(2) # Count occurrences of 2 my_list.sort() # Sort in place sorted_list = sorted(my_list) # Return new sorted list my_list.reverse() # Reverse in place
Advanced Techniques
# List as stack stack = [1, 2, 3] stack.append(4) # Push top_item = stack.pop() # Pop # List as queue (not efficient, use collections.deque instead) queue = [1, 2, 3] queue.append(4) # Enqueue first_item = queue.pop(0) # Dequeue # Nested lists matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] flattened = [item for sublist in matrix for item in sublist] # List multiplication repeated_list = [0] * 5 # [0, 0, 0, 0, 0] # List unpacking a, *b, c = [1, 2, 3, 4, 5] # a=1, b=[2, 3, 4], c=5
Tuples
Tuples are ordered, immutable sequences.
Creation
empty_tuple = () single_item_tuple = (1,) # Note the comma tuple_with_items = (1, 2, 3) tuple_from_iterable = tuple("abc")
Common Operations
# Accessing elements (similar to lists) first_item = my_tuple[0] last_item = my_tuple[-1] # Slicing (similar to lists) subset = my_tuple[1:4] # Other operations length = len(my_tuple) index = my_tuple.index(2) count = my_tuple.count(3) # Tuple unpacking a, b, c = (1, 2, 3)
Advanced Techniques
# Named tuples from collections import namedtuple Point = namedtuple('Point', ['x', 'y']) p = Point(11, y=22) print(p.x, p.y) # Tuple as dictionary keys (immutable, so allowed) dict_with_tuple_keys = {(1, 2): 'value'}
Sets
Sets are unordered collections of unique elements.
Creation
empty_set = set() set_with_items = {1, 2, 3} set_from_iterable = set([1, 2, 2, 3, 3]) # {1, 2, 3} set_comprehension = {x for x in range(10) if x % 2 == 0}
Common Operations
# Adding elements my_set.add(4) my_set.update([5, 6, 7]) # Removing elements my_set.remove(3) # Raises KeyError if not found my_set.discard(3) # No error if not found popped_item = my_set.pop() # Remove and return an arbitrary element # Other operations length = len(my_set) is_member = 2 in my_set # Set operations union = set1 | set2 intersection = set1 & set2 difference = set1 - set2 symmetric_difference = set1 ^ set2
Advanced Techniques
# Frozen sets (immutable) frozen = frozenset([1, 2, 3]) # Set comparisons is_subset = set1 = set2 is_disjoint = set1.isdisjoint(set2) # Set of sets (requires frozenset) set_of_sets = {frozenset([1, 2]), frozenset([3, 4])}
Dictionaries
Dictionaries are mutable mappings of key-value pairs.
Creation
empty_dict = {} dict_with_items = {'a': 1, 'b': 2, 'c': 3} dict_from_tuples = dict([('a', 1), ('b', 2), ('c', 3)]) dict_comprehension = {x: x**2 for x in range(5)}
Common Operations
# Accessing elements value = my_dict['key'] value = my_dict.get('key', default_value) # Adding/Updating elements my_dict['new_key'] = value my_dict.update({'key1': value1, 'key2': value2}) # Removing elements del my_dict['key'] popped_value = my_dict.pop('key', default_value) last_item = my_dict.popitem() # Remove and return an arbitrary key-value pair # Other operations keys = my_dict.keys() values = my_dict.values() items = my_dict.items() length = len(my_dict) is_key_present = 'key' in my_dict
Advanced Techniques
# Dictionary unpacking merged_dict = {**dict1, **dict2} # Default dictionaries from collections import defaultdict dd = defaultdict(list) dd['key'].append(1) # No KeyError # Ordered dictionaries (Python 3.7+ dictionaries are ordered by default) from collections import OrderedDict od = OrderedDict([('a', 1), ('b', 2), ('c', 3)]) # Counter from collections import Counter c = Counter(['a', 'b', 'c', 'a', 'b', 'b']) print(c.most_common(2)) # [('b', 3), ('a', 2)]
Strings
Strings are immutable sequences of Unicode characters.
Creation
single_quotes = 'Hello' double_quotes = "World" triple_quotes = '''Multiline string''' raw_string = r'C:\Users\name' f_string = f"The answer is {40 + 2}"
Common Operations
# Accessing characters first_char = my_string[0] last_char = my_string[-1] # Slicing (similar to lists) substring = my_string[1:4] # String methods upper_case = my_string.upper() lower_case = my_string.lower() stripped = my_string.strip() split_list = my_string.split(',') joined = ', '.join(['a', 'b', 'c']) # Other operations length = len(my_string) is_substring = 'sub' in my_string char_count = my_string.count('a')
Advanced Techniques
# String formatting formatted = "{} {}".format("Hello", "World") formatted = "%s %s" % ("Hello", "World") # Regular expressions import re pattern = r'\d+' matches = re.findall(pattern, my_string) # Unicode handling unicode_string = u'\u0061\u0062\u0063'
Arrays
Arrays are compact sequences of numeric values (from the array module).
Creation and Usage
from array import array int_array = array('i', [1, 2, 3, 4, 5]) float_array = array('f', (1.0, 1.5, 2.0, 2.5)) # Operations (similar to lists) int_array.append(6) int_array.extend([7, 8, 9]) popped_value = int_array.pop()
Stacks
Stacks can be implemented using lists or collections.deque.
Implementation and Usage
# Using list stack = [] stack.append(1) # Push stack.append(2) top_item = stack.pop() # Pop # Using deque (more efficient) from collections import deque stack = deque() stack.append(1) # Push stack.append(2) top_item = stack.pop() # Pop
Queues
Queues can be implemented using collections.deque or queue.Queue.
Implementation and Usage
# Using deque from collections import deque queue = deque() queue.append(1) # Enqueue queue.append(2) first_item = queue.popleft() # Dequeue # Using Queue (thread-safe) from queue import Queue q = Queue() q.put(1) # Enqueue q.put(2) first_item = q.get() # Dequeue
Linked Lists
Python doesn't have a built-in linked list, but it can be implemented.
Simple Implementation
class Node: def __init__(self, data): self.data = data self.next = None class LinkedList: def __init__(self): self.head = None def append(self, data): if not self.head: self.head = Node(data) return current = self.head while current.next: current = current.next current.next = Node(data)
Trees
Trees can be implemented using custom classes.
Simple Binary Tree Implementation
class TreeNode: def __init__(self, value): self.value = value self.left = None self.right = None class BinaryTree: def __init__(self, root): self.root = TreeNode(root) def insert(self, value): self._insert_recursive(self.root, value) def _insert_recursive(self, node, value): if value <h2> Heaps </h2> <p>Heaps can be implemented using the heapq module.</p> <h3> Usage </h3> <pre class="brush:php;toolbar:false">import heapq # Create a heap heap = [] heapq.heappush(heap, 3) heapq.heappush(heap, 1) heapq.heappush(heap, 4) # Pop smallest item smallest = heapq.heappop(heap) # Create a heap from a list my_list = [3, 1, 4, 1, 5, 9] heapq.heapify(my_list)
Graphs
Graphs can be implemented using dictionaries.
Simple Implementation
class Graph: def __init__(self): self.graph = {} def add_edge(self, u, v): if u not in self.graph: self.graph[u] = [] self.graph[u].append(v) def bfs(self, start): visited = set() queue = [start] visited.add(start) while queue: vertex = queue.pop(0) print(vertex, end=' ') for neighbor in self.graph.get(vertex, []): if neighbor not in visited: visited.add(neighbor) queue.append(neighbor)
Advanced Data Structures
Trie
class TrieNode: def __init__(self): self.children = {} self.is_end = False class Trie: def __init__(self): self.root = TrieNode() def insert(self, word): node = self.root for char in word: if char not in node.children: node.children[char] = TrieNode() node = node.children[char] node.is_end = True def search(self, word): node = self.root for char in word: if char not in node.children: return False node = node.children[char] return node.is_end
Disjoint Set (Union-Find)
class DisjointSet: def __init__(self, vertices): self.parent = {v: v for v in vertices} self.rank = {v: 0 for v in vertices} def find(self, item): if self.parent[item] != item: self.parent[item] = self.find(self.parent[item]) return self.parent[item] def union(self, x, y): xroot = self.find(x) yroot = self.find(y) if self.rank[xroot] self.rank[yroot]: self.parent[yroot] = xroot else: self.parent[yroot] = xroot self.rank[xroot] += 1
This comprehensive cheatsheet covers a wide range of Python data structures, from the basic built-in types to more advanced custom implementations. Each section includes creation methods, common operations, and advanced techniques where applicable.
0
The above is the detailed content of Comprehensive Python Data Structures Cheat sheet. For more information, please follow other related articles on the PHP Chinese website!

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Python provides a variety of ways to download files from the Internet, which can be downloaded over HTTP using the urllib package or the requests library. This tutorial will explain how to use these libraries to download files from URLs from Python. requests library requests is one of the most popular libraries in Python. It allows sending HTTP/1.1 requests without manually adding query strings to URLs or form encoding of POST data. The requests library can perform many functions, including: Add form data Add multi-part file Access Python response data Make a request head

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

Natural language processing (NLP) is the automatic or semi-automatic processing of human language. NLP is closely related to linguistics and has links to research in cognitive science, psychology, physiology, and mathematics. In the computer science

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap


Hot AI Tools

Undresser.AI Undress
AI-powered app for creating realistic nude photos

AI Clothes Remover
Online AI tool for removing clothes from photos.

Undress AI Tool
Undress images for free

Clothoff.io
AI clothes remover

AI Hentai Generator
Generate AI Hentai for free.

Hot Article

Hot Tools

SublimeText3 Linux new version
SublimeText3 Linux latest version

EditPlus Chinese cracked version
Small size, syntax highlighting, does not support code prompt function

SublimeText3 Chinese version
Chinese version, very easy to use

Notepad++7.3.1
Easy-to-use and free code editor

Dreamweaver Mac version
Visual web development tools
