search
HomeBackend DevelopmentPython TutorialComprehensive Python Data Structures Cheat sheet

Comprehensive Python Data Structures Cheat sheet

Comprehensive Python Data Structures Cheat sheet

Table of Contents

  1. Lists
  2. Tuples
  3. Sets
  4. Dictionaries
  5. Strings
  6. Arrays
  7. Stacks
  8. Queues
  9. Linked Lists
  10. Trees
  11. Heaps
  12. Graphs
  13. Advanced Data Structures

Lists

Lists are ordered, mutable sequences.

Creation

empty_list = []
list_with_items = [1, 2, 3]
list_from_iterable = list("abc")
list_comprehension = [x for x in range(10) if x % 2 == 0]

Common Operations

# Accessing elements
first_item = my_list[0]
last_item = my_list[-1]

# Slicing
subset = my_list[1:4]  # Elements 1 to 3
reversed_list = my_list[::-1]

# Adding elements
my_list.append(4)  # Add to end
my_list.insert(0, 0)  # Insert at specific index
my_list.extend([5, 6, 7])  # Add multiple elements

# Removing elements
removed_item = my_list.pop()  # Remove and return last item
my_list.remove(3)  # Remove first occurrence of 3
del my_list[0]  # Remove item at index 0

# Other operations
length = len(my_list)
index = my_list.index(4)  # Find index of first occurrence of 4
count = my_list.count(2)  # Count occurrences of 2
my_list.sort()  # Sort in place
sorted_list = sorted(my_list)  # Return new sorted list
my_list.reverse()  # Reverse in place

Advanced Techniques

# List as stack
stack = [1, 2, 3]
stack.append(4)  # Push
top_item = stack.pop()  # Pop

# List as queue (not efficient, use collections.deque instead)
queue = [1, 2, 3]
queue.append(4)  # Enqueue
first_item = queue.pop(0)  # Dequeue

# Nested lists
matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
flattened = [item for sublist in matrix for item in sublist]

# List multiplication
repeated_list = [0] * 5  # [0, 0, 0, 0, 0]

# List unpacking
a, *b, c = [1, 2, 3, 4, 5]  # a=1, b=[2, 3, 4], c=5

Tuples

Tuples are ordered, immutable sequences.

Creation

empty_tuple = ()
single_item_tuple = (1,)  # Note the comma
tuple_with_items = (1, 2, 3)
tuple_from_iterable = tuple("abc")

Common Operations

# Accessing elements (similar to lists)
first_item = my_tuple[0]
last_item = my_tuple[-1]

# Slicing (similar to lists)
subset = my_tuple[1:4]

# Other operations
length = len(my_tuple)
index = my_tuple.index(2)
count = my_tuple.count(3)

# Tuple unpacking
a, b, c = (1, 2, 3)

Advanced Techniques

# Named tuples
from collections import namedtuple
Point = namedtuple('Point', ['x', 'y'])
p = Point(11, y=22)
print(p.x, p.y)

# Tuple as dictionary keys (immutable, so allowed)
dict_with_tuple_keys = {(1, 2): 'value'}

Sets

Sets are unordered collections of unique elements.

Creation

empty_set = set()
set_with_items = {1, 2, 3}
set_from_iterable = set([1, 2, 2, 3, 3])  # {1, 2, 3}
set_comprehension = {x for x in range(10) if x % 2 == 0}

Common Operations

# Adding elements
my_set.add(4)
my_set.update([5, 6, 7])

# Removing elements
my_set.remove(3)  # Raises KeyError if not found
my_set.discard(3)  # No error if not found
popped_item = my_set.pop()  # Remove and return an arbitrary element

# Other operations
length = len(my_set)
is_member = 2 in my_set

# Set operations
union = set1 | set2
intersection = set1 & set2
difference = set1 - set2
symmetric_difference = set1 ^ set2

Advanced Techniques

# Frozen sets (immutable)
frozen = frozenset([1, 2, 3])

# Set comparisons
is_subset = set1 = set2
is_disjoint = set1.isdisjoint(set2)

# Set of sets (requires frozenset)
set_of_sets = {frozenset([1, 2]), frozenset([3, 4])}

Dictionaries

Dictionaries are mutable mappings of key-value pairs.

Creation

empty_dict = {}
dict_with_items = {'a': 1, 'b': 2, 'c': 3}
dict_from_tuples = dict([('a', 1), ('b', 2), ('c', 3)])
dict_comprehension = {x: x**2 for x in range(5)}

Common Operations

# Accessing elements
value = my_dict['key']
value = my_dict.get('key', default_value)

# Adding/Updating elements
my_dict['new_key'] = value
my_dict.update({'key1': value1, 'key2': value2})

# Removing elements
del my_dict['key']
popped_value = my_dict.pop('key', default_value)
last_item = my_dict.popitem()  # Remove and return an arbitrary key-value pair

# Other operations
keys = my_dict.keys()
values = my_dict.values()
items = my_dict.items()
length = len(my_dict)
is_key_present = 'key' in my_dict

Advanced Techniques

# Dictionary unpacking
merged_dict = {**dict1, **dict2}

# Default dictionaries
from collections import defaultdict
dd = defaultdict(list)
dd['key'].append(1)  # No KeyError

# Ordered dictionaries (Python 3.7+ dictionaries are ordered by default)
from collections import OrderedDict
od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])

# Counter
from collections import Counter
c = Counter(['a', 'b', 'c', 'a', 'b', 'b'])
print(c.most_common(2))  # [('b', 3), ('a', 2)]

Strings

Strings are immutable sequences of Unicode characters.

Creation

single_quotes = 'Hello'
double_quotes = "World"
triple_quotes = '''Multiline
string'''
raw_string = r'C:\Users\name'
f_string = f"The answer is {40 + 2}"

Common Operations

# Accessing characters
first_char = my_string[0]
last_char = my_string[-1]

# Slicing (similar to lists)
substring = my_string[1:4]

# String methods
upper_case = my_string.upper()
lower_case = my_string.lower()
stripped = my_string.strip()
split_list = my_string.split(',')
joined = ', '.join(['a', 'b', 'c'])

# Other operations
length = len(my_string)
is_substring = 'sub' in my_string
char_count = my_string.count('a')

Advanced Techniques

# String formatting
formatted = "{} {}".format("Hello", "World")
formatted = "%s %s" % ("Hello", "World")

# Regular expressions
import re
pattern = r'\d+'
matches = re.findall(pattern, my_string)

# Unicode handling
unicode_string = u'\u0061\u0062\u0063'

Arrays

Arrays are compact sequences of numeric values (from the array module).

Creation and Usage

from array import array
int_array = array('i', [1, 2, 3, 4, 5])
float_array = array('f', (1.0, 1.5, 2.0, 2.5))

# Operations (similar to lists)
int_array.append(6)
int_array.extend([7, 8, 9])
popped_value = int_array.pop()

Stacks

Stacks can be implemented using lists or collections.deque.

Implementation and Usage

# Using list
stack = []
stack.append(1)  # Push
stack.append(2)
top_item = stack.pop()  # Pop

# Using deque (more efficient)
from collections import deque
stack = deque()
stack.append(1)  # Push
stack.append(2)
top_item = stack.pop()  # Pop

Queues

Queues can be implemented using collections.deque or queue.Queue.

Implementation and Usage

# Using deque
from collections import deque
queue = deque()
queue.append(1)  # Enqueue
queue.append(2)
first_item = queue.popleft()  # Dequeue

# Using Queue (thread-safe)
from queue import Queue
q = Queue()
q.put(1)  # Enqueue
q.put(2)
first_item = q.get()  # Dequeue

Linked Lists

Python doesn't have a built-in linked list, but it can be implemented.

Simple Implementation

class Node:
    def __init__(self, data):
        self.data = data
        self.next = None

class LinkedList:
    def __init__(self):
        self.head = None

    def append(self, data):
        if not self.head:
            self.head = Node(data)
            return
        current = self.head
        while current.next:
            current = current.next
        current.next = Node(data)

Trees

Trees can be implemented using custom classes.

Simple Binary Tree Implementation

class TreeNode:
    def __init__(self, value):
        self.value = value
        self.left = None
        self.right = None

class BinaryTree:
    def __init__(self, root):
        self.root = TreeNode(root)

    def insert(self, value):
        self._insert_recursive(self.root, value)

    def _insert_recursive(self, node, value):
        if value 



<h2>
  
  
  Heaps
</h2>

<p>Heaps can be implemented using the heapq module.</p>

<h3>
  
  
  Usage
</h3>



<pre class="brush:php;toolbar:false">import heapq

# Create a heap
heap = []
heapq.heappush(heap, 3)
heapq.heappush(heap, 1)
heapq.heappush(heap, 4)

# Pop smallest item
smallest = heapq.heappop(heap)

# Create a heap from a list
my_list = [3, 1, 4, 1, 5, 9]
heapq.heapify(my_list)

Graphs

Graphs can be implemented using dictionaries.

Simple Implementation

class Graph:
    def __init__(self):
        self.graph = {}

    def add_edge(self, u, v):
        if u not in self.graph:
            self.graph[u] = []
        self.graph[u].append(v)

    def bfs(self, start):
        visited = set()
        queue = [start]
        visited.add(start)
        while queue:
            vertex = queue.pop(0)
            print(vertex, end=' ')
            for neighbor in self.graph.get(vertex, []):
                if neighbor not in visited:
                    visited.add(neighbor)
                    queue.append(neighbor)

Advanced Data Structures

Trie

class TrieNode:
    def __init__(self):
        self.children = {}
        self.is_end = False

class Trie:
    def __init__(self):
        self.root = TrieNode()

    def insert(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                node.children[char] = TrieNode()
            node = node.children[char]
        node.is_end = True

    def search(self, word):
        node = self.root
        for char in word:
            if char not in node.children:
                return False
            node = node.children[char]
        return node.is_end

Disjoint Set (Union-Find)

class DisjointSet:
    def __init__(self, vertices):
        self.parent = {v: v for v in vertices}
        self.rank = {v: 0 for v in vertices}

    def find(self, item):
        if self.parent[item] != item:
            self.parent[item] = self.find(self.parent[item])
        return self.parent[item]

    def union(self, x, y):
        xroot = self.find(x)
        yroot = self.find(y)
        if self.rank[xroot]  self.rank[yroot]:
            self.parent[yroot] = xroot
        else:
            self.parent[yroot] = xroot
            self.rank[xroot] += 1

This comprehensive cheatsheet covers a wide range of Python data structures, from the basic built-in types to more advanced custom implementations. Each section includes creation methods, common operations, and advanced techniques where applicable.
0

The above is the detailed content of Comprehensive Python Data Structures Cheat sheet. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

How to Download Files in PythonHow to Download Files in PythonMar 01, 2025 am 10:03 AM

Python provides a variety of ways to download files from the Internet, which can be downloaded over HTTP using the urllib package or the requests library. This tutorial will explain how to use these libraries to download files from URLs from Python. requests library requests is one of the most popular libraries in Python. It allows sending HTTP/1.1 requests without manually adding query strings to URLs or form encoding of POST data. The requests library can perform many functions, including: Add form data Add multi-part file Access Python response data Make a request head

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How to Work With PDF Documents Using PythonHow to Work With PDF Documents Using PythonMar 02, 2025 am 09:54 AM

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

How to Cache Using Redis in Django ApplicationsHow to Cache Using Redis in Django ApplicationsMar 02, 2025 am 10:10 AM

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

Introducing the Natural Language Toolkit (NLTK)Introducing the Natural Language Toolkit (NLTK)Mar 01, 2025 am 10:05 AM

Natural language processing (NLP) is the automatic or semi-automatic processing of human language. NLP is closely related to linguistics and has links to research in cognitive science, psychology, physiology, and mathematics. In the computer science

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools