search
HomeBackend DevelopmentPython TutorialEfficiently Reading Millions of Rows of SQL Data with Python

Efficiently Reading Millions of Rows of SQL Data with Python

Working with large datasets in SQL can be challenging, especially when you need to read millions of rows efficiently. Here’s a straightforward approach to handle this using Python, ensuring that your data processing remains performant and manageable.

Solved End-to-End Big Data and Data Science Projects

Use Efficient Database Drivers

Python has several database drivers like psycopg2 for PostgreSQL, mysql-connector-python for MySQL, and sqlite3 for SQLite. Choose the driver that best fits your database.

import mysql.connector

connection = mysql.connector.connect(
    host="your_host",
    user="your_username",
    password="your_password",
    database="your_database"
)
cursor = connection.cursor()

Fetch Data in Chunks

Fetching millions of rows at once can overwhelm your memory. Instead, fetch data in manageable chunks using a loop. This method keeps memory usage low and maintains performance.

chunk_size = 10000
offset = 0

while True:
    query = f"SELECT * FROM your_table LIMIT {chunk_size} OFFSET {offset}"
    cursor.execute(query)
    rows = cursor.fetchall()

    if not rows:
        break

    process_data(rows)
    offset += chunk_size

Process Data Efficiently

Ensure that your data processing within the process_data function is efficient. Avoid unnecessary computations and leverage vectorized operations with libraries like NumPy or Pandas.

import pandas as pd

def process_data(rows):
    df = pd.DataFrame(rows, columns=['col1', 'col2', 'col3'])
    # Perform operations on the DataFrame
    print(df.head())

Utilize Connection Pooling

For repetitive tasks, connection pooling can help manage database connections efficiently. Libraries like SQLAlchemy provide robust pooling solutions.

from sqlalchemy import create_engine

engine = create_engine("mysql+mysqlconnector://user:password@host/dbname")
connection = engine.connect()

chunk_size = 10000
offset = 0

while True:
    query = f"SELECT * FROM your_table LIMIT {chunk_size} OFFSET {offset}"
    result_proxy = connection.execute(query)
    rows = result_proxy.fetchall()

    if not rows:
        break

    process_data(rows)
    offset += chunk_size

By following these steps, you can efficiently read and process millions of rows of SQL data using Python. This approach ensures that your application remains responsive and performant, even when dealing with large datasets.

The above is the detailed content of Efficiently Reading Millions of Rows of SQL Data with Python. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
How to Use Python to Find the Zipf Distribution of a Text FileHow to Use Python to Find the Zipf Distribution of a Text FileMar 05, 2025 am 09:58 AM

This tutorial demonstrates how to use Python to process the statistical concept of Zipf's law and demonstrates the efficiency of Python's reading and sorting large text files when processing the law. You may be wondering what the term Zipf distribution means. To understand this term, we first need to define Zipf's law. Don't worry, I'll try to simplify the instructions. Zipf's Law Zipf's law simply means: in a large natural language corpus, the most frequently occurring words appear about twice as frequently as the second frequent words, three times as the third frequent words, four times as the fourth frequent words, and so on. Let's look at an example. If you look at the Brown corpus in American English, you will notice that the most frequent word is "th

How Do I Use Beautiful Soup to Parse HTML?How Do I Use Beautiful Soup to Parse HTML?Mar 10, 2025 pm 06:54 PM

This article explains how to use Beautiful Soup, a Python library, to parse HTML. It details common methods like find(), find_all(), select(), and get_text() for data extraction, handling of diverse HTML structures and errors, and alternatives (Sel

Image Filtering in PythonImage Filtering in PythonMar 03, 2025 am 09:44 AM

Dealing with noisy images is a common problem, especially with mobile phone or low-resolution camera photos. This tutorial explores image filtering techniques in Python using OpenCV to tackle this issue. Image Filtering: A Powerful Tool Image filter

How to Work With PDF Documents Using PythonHow to Work With PDF Documents Using PythonMar 02, 2025 am 09:54 AM

PDF files are popular for their cross-platform compatibility, with content and layout consistent across operating systems, reading devices and software. However, unlike Python processing plain text files, PDF files are binary files with more complex structures and contain elements such as fonts, colors, and images. Fortunately, it is not difficult to process PDF files with Python's external modules. This article will use the PyPDF2 module to demonstrate how to open a PDF file, print a page, and extract text. For the creation and editing of PDF files, please refer to another tutorial from me. Preparation The core lies in using external module PyPDF2. First, install it using pip: pip is P

How to Cache Using Redis in Django ApplicationsHow to Cache Using Redis in Django ApplicationsMar 02, 2025 am 10:10 AM

This tutorial demonstrates how to leverage Redis caching to boost the performance of Python applications, specifically within a Django framework. We'll cover Redis installation, Django configuration, and performance comparisons to highlight the bene

How to Perform Deep Learning with TensorFlow or PyTorch?How to Perform Deep Learning with TensorFlow or PyTorch?Mar 10, 2025 pm 06:52 PM

This article compares TensorFlow and PyTorch for deep learning. It details the steps involved: data preparation, model building, training, evaluation, and deployment. Key differences between the frameworks, particularly regarding computational grap

Introduction to Parallel and Concurrent Programming in PythonIntroduction to Parallel and Concurrent Programming in PythonMar 03, 2025 am 10:32 AM

Python, a favorite for data science and processing, offers a rich ecosystem for high-performance computing. However, parallel programming in Python presents unique challenges. This tutorial explores these challenges, focusing on the Global Interprete

How to Implement Your Own Data Structure in PythonHow to Implement Your Own Data Structure in PythonMar 03, 2025 am 09:28 AM

This tutorial demonstrates creating a custom pipeline data structure in Python 3, leveraging classes and operator overloading for enhanced functionality. The pipeline's flexibility lies in its ability to apply a series of functions to a data set, ge

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
2 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Repo: How To Revive Teammates
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: How To Get Giant Seeds
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 Mac version

SublimeText3 Mac version

God-level code editing software (SublimeText3)

mPDF

mPDF

mPDF is a PHP library that can generate PDF files from UTF-8 encoded HTML. The original author, Ian Back, wrote mPDF to output PDF files "on the fly" from his website and handle different languages. It is slower than original scripts like HTML2FPDF and produces larger files when using Unicode fonts, but supports CSS styles etc. and has a lot of enhancements. Supports almost all languages, including RTL (Arabic and Hebrew) and CJK (Chinese, Japanese and Korean). Supports nested block-level elements (such as P, DIV),

SublimeText3 Chinese version

SublimeText3 Chinese version

Chinese version, very easy to use

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft