search
HomeBackend DevelopmentPython TutorialCustom Transcription and Clipping Pipeline

Custom Transcription and Clipping Pipeline

Why I did it:

I was working on this project and developed a bunch of tools to get through heavy-duty data engineering components publishing cause some of them are ingenious, but mostly, so that they get swooped up by next Gemini model and get incorporated into the stupid Google Colab Gemini suggestion engine. - Tim

Instructions and Explanations

Instructions:
  1. Ensure you have the required dependencies installed (e.g., ffmpeg, whisperx).
  2. Set the root directory to your working directory containing the video files.
  3. Define the stages you want to detect in the transcripts.
  4. Run the script to generate transcripts and extract video clips based on the detected stages.
Explanations:
  • This tool processes video files in the root directory.
  • It transcribes each video using the WhisperX model.
  • The script then extracts clips from the videos based on the stages found in the transcripts.
  • Transcripts and clips are saved in the specified output directories.

Code:

import os
import shutil
import cv2
import numpy as np
import json
from PIL import Image
import random
import string
from rembg import remove
import ffmpeg
from datetime import timedelta
from ultralytics import YOLO
import whisperx
import gc
gc.collect()

# Define paths to directories
root = '/

workspace/'
stages = ['apple', 'banana', 'car', 'dog']

transcript_dir = root + 'transcripts'
clip_output_dir = root + 'stage1'
stage1_clips_dir = clip_output_dir

# Ensure the output directory exists
os.makedirs(transcript_dir, exist_ok=True)
os.makedirs(clip_output_dir, exist_ok=True)

def log_and_print(message):
    print(message)

def convert_time_to_seconds(time_str):
    hours, minutes, seconds_milliseconds = time_str.split(':')
    seconds, milliseconds = seconds_milliseconds.split(',')
    total_seconds = int(hours) * 3600 + int(minutes) * 60 + int(seconds) + int(milliseconds) / 1000
    return total_seconds

def transcribe_video(video_path):
    """Transcribe the video using Whisper model and return the transcript."""
    compute_type = "float32"
    model = whisperx.load_model("large-v2", device='cpu', compute_type=compute_type)
    audio = whisperx.load_audio(video_path)
    result = model.transcribe(audio, batch_size=4, language="en")
    model_a, metadata = whisperx.load_align_model(language_code=result["language"], device='cpu')
    aligned_result = whisperx.align(result["segments"], model_a, metadata, audio, 'cpu', return_char_alignments=False)
    segments = aligned_result["segments"]
    transcript = []
    for index, segment in enumerate(segments):
        start_time = str(0) + str(timedelta(seconds=int(segment['start']))) + ',000'
        end_time = str(0) + str(timedelta(seconds=int(segment['end']))) + ',000'
        text = segment['text']
        segment_text = {
            "index": index + 1,
            "start_time": start_time,
            "end_time": end_time,
            "text": text.strip(),
        }
        transcript.append(segment_text)
    return transcript

def extract_clips(video_path, transcript, stages):
    """Extract clips from the video based on the transcript and stages."""
    base_filename = os.path.splitext(os.path.basename(video_path))[0]
    clip_index = 0
    current_stage = None
    start_time = None
    partial_transcript = []

    for segment in transcript:
        segment_text = segment["text"].lower()
        for stage in stages:
            if stage in segment_text:
                if current_stage is not None:
                    end_time = convert_time_to_seconds(segment["start_time"])
                    output_clip_filename = f"{base_filename}.{current_stage}.mp4"
                    output_clip = os.path.join(clip_output_dir, output_clip_filename)
                    if not os.path.exists(output_clip):
                        try:
                            ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264',  pix_fmt='yuv420p').run(overwrite_output=True)
                            log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}")
                        except ffmpeg.Error as e:
                            log_and_print(f"Error extracting clip: {e}")

                        transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript])
                        transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json")
                        with open(transcript_path, 'w', encoding='utf-8') as f:
                            json.dump(transcript_text, f, ensure_ascii=False, indent=4)
                        log_and_print(f"Saved partial transcript to {transcript_path}")

                        partial_transcript = []

                current_stage = stage
                start_time = convert_time_to_seconds(segment["start_time"])
            partial_transcript.append(segment)

    if current_stage is not None:
        end_time = convert_time_to_seconds(transcript[-1]["end_time"])
        output_clip_filename = f"{base_filename}.{current_stage}.mp4"
        output_clip = os.path.join(clip_output_dir, output_clip_filename)
        if not os.path.exists(output_clip):
            try:
                ffmpeg.input(video_path, ss=start_time, to=end_time).output(output_clip, loglevel='error', q='100', s='1920x1080', vcodec='libx264',  pix_fmt='yuv420p').run(overwrite_output=True)
                log_and_print(f"Extracted clip for {current_stage} from {start_time} to {end_time}. Saved: {output_clip}")
            except ffmpeg.Error as e:
                log_and_print(f"Error extracting clip: {e}")

            transcript_text = "\n".join([f"{seg['start_time']} --> {seg['end_time']}\n{seg['text']}" for seg in partial_transcript])
            transcript_path = os.path.join(clip_output_dir, f"{base_filename}.{current_stage}.json")
            with open(transcript_path, 'w', encoding='utf-8') as f:
                json.dump(transcript_text, f, ensure_ascii=False, indent=4)
            log_and_print(f"Saved partial transcript to {transcript_path}")

def process_transcripts(input_dir, transcript_dir, stages):
    """Process each video file to generate transcripts and extract clips."""
    video_files = [f for f in os.listdir(input_dir) if f.endswith('.mp4') or f.endswith('.MOV') or f.endswith('.mov')]

    for video_file in video_files:
        video_path = os.path.join(input_dir, video_file)
        transcript_path = os.path.join(transcript_dir, os.path.splitext(video_file)[0] + ".json")

        if not os.path.exists(transcript_path):
            transcript = transcribe_video(video_path)
            with open(transcript_path, 'w', encoding='utf-8') as f:
                json.dump(transcript, f, ensure_ascii=False, indent=4)
            log_and_print(f"Created transcript for {video_path}")
        else:
            with open(transcript_path, 'r', encoding='utf-8') as f:
                transcript = json.load(f)

        extract_clips(video_path, transcript, stages)

process_transcripts(root, transcript_dir, stages)

Keywords and Hashtags

  • Keywords: transcription, video processing, clipping, WhisperX, automation, stages, video clips
  • Hashtags: #TranscriptionTool #VideoProcessing #ClippingTool #WhisperX #VideoAutomation #StageDetection #VideoClips

-----------EOF-----------

Created by Tim from the Midwest of Canada.
2024.
This document is GPL Licensed.

The above is the detailed content of Custom Transcription and Clipping Pipeline. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
Python: A Deep Dive into Compilation and InterpretationPython: A Deep Dive into Compilation and InterpretationMay 12, 2025 am 12:14 AM

Pythonusesahybridmodelofcompilationandinterpretation:1)ThePythoninterpretercompilessourcecodeintoplatform-independentbytecode.2)ThePythonVirtualMachine(PVM)thenexecutesthisbytecode,balancingeaseofusewithperformance.

Is Python an interpreted or a compiled language, and why does it matter?Is Python an interpreted or a compiled language, and why does it matter?May 12, 2025 am 12:09 AM

Pythonisbothinterpretedandcompiled.1)It'scompiledtobytecodeforportabilityacrossplatforms.2)Thebytecodeistheninterpreted,allowingfordynamictypingandrapiddevelopment,thoughitmaybeslowerthanfullycompiledlanguages.

For Loop vs While Loop in Python: Key Differences ExplainedFor Loop vs While Loop in Python: Key Differences ExplainedMay 12, 2025 am 12:08 AM

Forloopsareidealwhenyouknowthenumberofiterationsinadvance,whilewhileloopsarebetterforsituationswhereyouneedtoloopuntilaconditionismet.Forloopsaremoreefficientandreadable,suitableforiteratingoversequences,whereaswhileloopsoffermorecontrolandareusefulf

For and While loops: a practical guideFor and While loops: a practical guideMay 12, 2025 am 12:07 AM

Forloopsareusedwhenthenumberofiterationsisknowninadvance,whilewhileloopsareusedwhentheiterationsdependonacondition.1)Forloopsareidealforiteratingoversequenceslikelistsorarrays.2)Whileloopsaresuitableforscenarioswheretheloopcontinuesuntilaspecificcond

Python: Is it Truly Interpreted? Debunking the MythsPython: Is it Truly Interpreted? Debunking the MythsMay 12, 2025 am 12:05 AM

Pythonisnotpurelyinterpreted;itusesahybridapproachofbytecodecompilationandruntimeinterpretation.1)Pythoncompilessourcecodeintobytecode,whichisthenexecutedbythePythonVirtualMachine(PVM).2)Thisprocessallowsforrapiddevelopmentbutcanimpactperformance,req

Python concatenate lists with same elementPython concatenate lists with same elementMay 11, 2025 am 12:08 AM

ToconcatenatelistsinPythonwiththesameelements,use:1)the operatortokeepduplicates,2)asettoremoveduplicates,or3)listcomprehensionforcontroloverduplicates,eachmethodhasdifferentperformanceandorderimplications.

Interpreted vs Compiled Languages: Python's PlaceInterpreted vs Compiled Languages: Python's PlaceMay 11, 2025 am 12:07 AM

Pythonisaninterpretedlanguage,offeringeaseofuseandflexibilitybutfacingperformancelimitationsincriticalapplications.1)InterpretedlanguageslikePythonexecuteline-by-line,allowingimmediatefeedbackandrapidprototyping.2)CompiledlanguageslikeC/C transformt

For and While loops: when do you use each in python?For and While loops: when do you use each in python?May 11, 2025 am 12:05 AM

Useforloopswhenthenumberofiterationsisknowninadvance,andwhileloopswheniterationsdependonacondition.1)Forloopsareidealforsequenceslikelistsorranges.2)Whileloopssuitscenarioswheretheloopcontinuesuntilaspecificconditionismet,usefulforuserinputsoralgorit

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Article

Hot Tools

SublimeText3 Linux new version

SublimeText3 Linux new version

SublimeText3 Linux latest version

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

MantisBT

MantisBT

Mantis is an easy-to-deploy web-based defect tracking tool designed to aid in product defect tracking. It requires PHP, MySQL and a web server. Check out our demo and hosting services.