search
HomeTechnology peripheralsAIICML 2024 | Signal representation is exponentially stronger, memory saving exceeds 35%, quantum implicit representation network is coming

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了
The AIxiv column is a column where academic and technical content is published on this site. In the past few years, the AIxiv column of this site has received more than 2,000 reports, covering top laboratories from major universities and companies around the world, effectively promoting academic exchanges and dissemination. If you have excellent work that you want to share, please feel free to contribute or contact us for reporting. Submission email: liyazhou@jiqizhixin.com; zhaoyunfeng@jiqizhixin.com

The authors of this article are Professor Zhang Peng of the Department of Intelligence and Computing of Tianjin University, his master's student Zhao Jiaming, and doctoral students Qiao Wenbo and Gao Jue. This research work was funded by the National Natural Science Foundation of China and Tianjin University-China Science and Technology Wenge Joint Laboratory.

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

  • Paper title: Quantum Implicit Neural Representations
  • Paper authors: Jiaming Zhao, Wenbo Qiao, Peng Zhang*, Hui Gao
  • Paper link: https://arxiv.org/abs /2406.03873

Introduction

The Tianjin University Quantum Intelligence and Language Understanding team innovatively introduced quantum computing into the field of implicit neural representation and proposed the quantum implicit representation network (Q uantum Implicit Representation Network, QIREN). Compared with the classic neural network method, this method has exponentially stronger signal representation capabilities in theory. Experimental results also confirm that QIREN indeed exhibits excellent performance beyond the SOTA model on signal representation tasks, with fitting errors reduced by up to 35% with fewer parameters. Figure 1 shows the core idea and main conclusions of this paper. Relevant papers have been accepted by ICML 2024, one of the most authoritative conferences in the field of machine learning. ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了
                                                                                                                                                                                                                                       Figure 1. Classical Fourier neural network and quantum Fourier neural network.

In recent years, implicit neural representation has attracted widespread attention as an emerging signal representation method. Implicit neural representations have a number of unique advantages over traditional discrete grid representations, such as images represented by a grid of pixels. First, it has the capability of "infinite resolution" and can sample at any spatial resolution. Secondly, implicit neural representation has excellent storage space saving and provides convenience for data storage. Because of these unique advantages, implicit neural representation has quickly become a mainstream paradigm for representing signals such as images, objects, and 3D scenes. Most early research on implicit neural representations was built on ReLU-based multilayer perceptrons (MLPs). However, it is difficult for ReLU-based MLP to accurately model the high-frequency part of the signal, as shown in Figure 2. Recent research has begun to explore the use of Fourier neural networks (FNN) to overcome this limitation. However, in the face of increasingly complex fitting tasks in real-world applications, classical Fourier neural networks also require more and more training parameters, which increases the demand for computing resources. The quantum implicit neural representation proposed in this article takes advantage of quantum advantages to reduce parameters and computational consumption. This solution can bring new inspiration to the field of implicit neural representation and even machine learning.像 Figure 2. Different frequency components of the different frequency components (top) and RELU -based MLP -based images (bottom)

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

Model

                                                                                                                                                                        Figure 3. Model architecture

The overall architecture of QIREN is shown in Figure 3. Consists of N mixed layers and linear layers at the end. The model takes coordinates as input and outputs signal values. The data initially enters the mixed layer, starting with the Linear layer and the BatchNorm layer, resulting in:

and is then fed into the data re-upload quantum circuit QC. In Figure 2 (b) and (c), we give the specific implementation of the parameter layer and coding layer quantum circuits. The parameter layer consists of K stacked blocks. Each block contains a spin gate applied to each qubit, as well as CNOT gates connected in a round-robin fashion. The coding layer applies gates on each qubit. Finally, we measure the expected value of a quantum state relative to an observable. The output of a quantum circuit is given by:

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

where O represents any observable. The output of the nth blending layer will be used as the input of the (n+1)th layer. Finally, we add a linear layer to receive and output. We use mean square error (MSE) as the loss function to train the model:

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

Model theoretical analysis

In some previous studies, the mathematical properties of the data re-upload quantum circuit have been revealed. In essence, the data re-upload quantum circuit is to fit the objective function in the form of a Fourier series. However, previous work only explored multi-layer single-qubit circuits or single-layer multi-qubit circuits, and did not compare with classical methods and did not find the advantages of data re-uploading quantum circuits. We extend our research to multi-layer multi-qubit circuits. In addition, we have proven that in the field of implicit neural representation, the hybrid quantum neural network QIREN, which uses data reuploading quantum circuits as its core component, has exponential advantages over classical methods. We analyzed the role of the quantum layer and the classical layer in QIREN and summarized it into the following three points:

1. Under optimal conditions, the ability of data re-uploading quantum circuits to represent Fourier series increases with the circuit's The size grows exponentially.

See sections 4.2 and 4.3 of the paper for specific derivation.

2. The function of the linear layer is to further expand the spectrum and adjust the frequency, thereby improving the fitting performance.

Applying a linear layer before uploading data to a quantum circuit is equivalent to adjusting the eigenvalues ​​of the coding layer Hamiltonian, ultimately affecting the spectrum. This approach has two advantages. First, it can make the spectrum larger. Some redundant terms are produced in the spectrum when encoding only with gates. This redundancy can be reduced by using linear layers. Second, it enables the coverage of the spectrum to be adjusted, aiming to cover frequencies with larger coefficients that are more important. Therefore, adding a linear layer can further improve the fitting performance of QIREN.

3. The role of the Batchnorm layer is to accelerate the convergence of the quantum model.

In feedforward neural networks, data usually passes through the BatchNorm layer before the activation function, which effectively prevents the vanishing gradient problem. Similarly, in QIREN, quantum circuits replace the activation function and play a role in providing nonlinearity (the quantum circuit itself is linear, but the process of uploading classical data to the quantum circuit is nonlinear). Therefore, we added a BatchNorm layer here with the purpose of stabilizing and accelerating the convergence of the model.

Experimental results

We verified QIREN’s superior performance in representing signals, especially high-frequency signals, through image representation and sound representation tasks. The experimental results are shown in Table 1. QIREN and SIREN showed similar performance on the sound representation task. Although the performance of the two models seems to be comparable, it is worth emphasizing that our model achieves 35.1% memory savings with the fewest parameters, and the convergence of SIREN requires setting appropriate hyperparameters, while our model does not This kind of restriction. We then analyzed the model output from a frequency perspective. We visualize the spectrum of the model output in Figure 4 . It is obvious that the low-frequency distributions output by the model are close to the real situation. However, when it comes to high-frequency distributions, both QIREN and SIREN fit well, followed by ReLU-based MLP with random Fourier features (RFF). ReLU-based and Tanh-based MLPs even lack the high-frequency part of the signal.

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

Table 1. MSE() of the model on signal representation and image super-resolution tasks. Models considered SOTA are marked *. params represents the amount of model parameters, and mem represents the memory saved by the model compared with discrete grid representation.任 Figure 4. Sound indicating the spectrum of the model output in the task. Qiren achieves the best performance in the image representation task. Compared with the SOTA model, the error is The maximum reduction was 34.8%. To further explore the signal representation capabilities of the model, we use filters to separate the high-frequency and low-frequency components of its output and compare the fitting errors of these two components respectively, with the results shown in Figure 5. QIREN consistently achieves the lowest errors when fitting high- and low-frequency components.

                                                                                                                                                                                                                                                             Figure 5. Relative error of each model compared to Tanh-based MLP. Shaded areas represent low-frequency errors, while unshaded areas represent high-frequency errors.

Latest research introduces a breakthrough framework to extend implicit neural representations to image generation. More specifically, the framework utilizes a hypernetwork taking random distributions as input to generate parameters that implicitly characterize the network. Subsequently, these generated parameters are assigned to the implicit representation network. Finally, the implicit representation network generates images taking coordinates as input. An adversarial approach is employed to ensure that the generated images are consistent with our desired results. In this task, we adopt such a framework and build on StyleGAN2.

The experimental results are shown in Table 2. We also further explore some exciting features of the QIREN generator, as shown in Figures 6 and 7. F Table 2. FID score of the model on FFHQ and CELEBA-HQ datasets.

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

                                                                                                                                                                                                                                                                                                                                                                                 Figure 7. Meaningful image space interpolation

ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

summary

This work not only integrates quantum advantages into implicit neural representation, but also opens up a promising application direction for quantum neural networks - implicit neural representation. It is worth emphasizing that implicit neural representations have many other potential applications, such as representing scenes or 3D objects, time series prediction, and solving differential equations. For a large class of tasks that model continuous signals, we can consider introducing implicit representation networks as a basic component. Based on the theoretical and experimental foundations of this paper, we can extend QIREN to these applications in future work, and QIREN is expected to produce better results with fewer parameters in these fields. At the same time, we found a suitable application scenario for quantum machine learning. Thereby promoting further practical and innovative research within the quantum machine learning community. ICML 2024 | 信号表征指数级强、内存节省超35%,量子隐式表征网络来了

The above is the detailed content of ICML 2024 | Signal representation is exponentially stronger, memory saving exceeds 35%, quantum implicit representation network is coming. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议4090生成器:与A100平台相比,token生成速度仅低于18%,上交推理引擎赢得热议Dec 21, 2023 pm 03:25 PM

PowerInfer提高了在消费级硬件上运行AI的效率上海交大团队最新推出了超强CPU/GPULLM高速推理引擎PowerInfer。PowerInfer和llama.cpp都在相同的硬件上运行,并充分利用了RTX4090上的VRAM。这个推理引擎速度有多快?在单个NVIDIARTX4090GPU上运行LLM,PowerInfer的平均token生成速率为13.20tokens/s,峰值为29.08tokens/s,仅比顶级服务器A100GPU低18%,可适用于各种LLM。PowerInfer与

思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了思维链CoT进化成思维图GoT,比思维树更优秀的提示工程技术诞生了Sep 05, 2023 pm 05:53 PM

要让大型语言模型(LLM)充分发挥其能力,有效的prompt设计方案是必不可少的,为此甚至出现了promptengineering(提示工程)这一新兴领域。在各种prompt设计方案中,思维链(CoT)凭借其强大的推理能力吸引了许多研究者和用户的眼球,基于其改进的CoT-SC以及更进一步的思维树(ToT)也收获了大量关注。近日,苏黎世联邦理工学院、Cledar和华沙理工大学的一个研究团队提出了更进一步的想法:思维图(GoT)。让思维从链到树到图,为LLM构建推理过程的能力不断得到提升,研究者也通

复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来复旦NLP团队发布80页大模型Agent综述,一文纵览AI智能体的现状与未来Sep 23, 2023 am 09:01 AM

近期,复旦大学自然语言处理团队(FudanNLP)推出LLM-basedAgents综述论文,全文长达86页,共有600余篇参考文献!作者们从AIAgent的历史出发,全面梳理了基于大型语言模型的智能代理现状,包括:LLM-basedAgent的背景、构成、应用场景、以及备受关注的代理社会。同时,作者们探讨了Agent相关的前瞻开放问题,对于相关领域的未来发展趋势具有重要价值。论文链接:https://arxiv.org/pdf/2309.07864.pdfLLM-basedAgent论文列表:

吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了吞吐量提升5倍,联合设计后端系统和前端语言的LLM接口来了Mar 01, 2024 pm 10:55 PM

大型语言模型(LLM)被广泛应用于需要多个链式生成调用、高级提示技术、控制流以及与外部环境交互的复杂任务。尽管如此,目前用于编程和执行这些应用程序的高效系统却存在明显的不足之处。研究人员最近提出了一种新的结构化生成语言(StructuredGenerationLanguage),称为SGLang,旨在改进与LLM的交互性。通过整合后端运行时系统和前端语言的设计,SGLang使得LLM的性能更高、更易控制。这项研究也获得了机器学习领域的知名学者、CMU助理教授陈天奇的转发。总的来说,SGLang的

大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」大模型也有小偷?为保护你的参数,上交大给大模型制作「人类可读指纹」Feb 02, 2024 pm 09:33 PM

将不同的基模型象征为不同品种的狗,其中相同的「狗形指纹」表明它们源自同一个基模型。大模型的预训练需要耗费大量的计算资源和数据,因此预训练模型的参数成为各大机构重点保护的核心竞争力和资产。然而,与传统软件知识产权保护不同,对预训练模型参数盗用的判断存在以下两个新问题:1)预训练模型的参数,尤其是千亿级别模型的参数,通常不会开源。预训练模型的输出和参数会受到后续处理步骤(如SFT、RLHF、continuepretraining等)的影响,这使得判断一个模型是否基于另一个现有模型微调得来变得困难。无

FATE 2.0发布:实现异构联邦学习系统互联FATE 2.0发布:实现异构联邦学习系统互联Jan 16, 2024 am 11:48 AM

FATE2.0全面升级,推动隐私计算联邦学习规模化应用FATE开源平台宣布发布FATE2.0版本,作为全球领先的联邦学习工业级开源框架。此次更新实现了联邦异构系统之间的互联互通,持续增强了隐私计算平台的互联互通能力。这一进展进一步推动了联邦学习与隐私计算规模化应用的发展。FATE2.0以全面互通为设计理念,采用开源方式对应用层、调度、通信、异构计算(算法)四个层面进行改造,实现了系统与系统、系统与算法、算法与算法之间异构互通的能力。FATE2.0的设计兼容了北京金融科技产业联盟的《金融业隐私计算

220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升220亿晶体管,IBM机器学习专用处理器NorthPole,能效25倍提升Oct 23, 2023 pm 03:13 PM

IBM再度发力。随着AI系统的飞速发展,其能源需求也在不断增加。训练新系统需要大量的数据集和处理器时间,因此能耗极高。在某些情况下,执行一些训练好的系统,智能手机就能轻松胜任。但是,执行的次数太多,能耗也会增加。幸运的是,有很多方法可以降低后者的能耗。IBM和英特尔已经试验过模仿实际神经元行为设计的处理器。IBM还测试了在相变存储器中执行神经网络计算,以避免重复访问RAM。现在,IBM又推出了另一种方法。该公司的新型NorthPole处理器综合了上述方法的一些理念,并将其与一种非常精简的计算运行

14秒就能重建视频,还能变换角色,Meta让视频合成提速44倍14秒就能重建视频,还能变换角色,Meta让视频合成提速44倍Dec 27, 2023 pm 06:35 PM

Meta的视频合成新框架给我们带来了一些惊喜就今天的人工智能发展水平来说,文生图、图生视频、图像/视频风格迁移都已经不算什么难事。生成式AI天赋异禀,能够毫不费力地创建或修改内容。尤其是图像编辑,在以十亿规模数据集为基础预训练的文本到图像扩散模型的推动下,经历了重大发展。这股浪潮催生了大量图像编辑和内容创建应用。基于图像的生成模型所取得的成就基础上,下一个挑战的领域必然是为其增加「时间维度」,从而实现轻松而富有创意的视频编辑。一种直接策略是使用图像模型逐帧处理视频,然而,生成式图像编辑本身就具有

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

SublimeText3 English version

SublimeText3 English version

Recommended: Win version, supports code prompts!

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

Notepad++7.3.1

Notepad++7.3.1

Easy-to-use and free code editor

PhpStorm Mac version

PhpStorm Mac version

The latest (2018.2.1) professional PHP integrated development tool

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment