search
HomeTechnology peripheralsAICombining quantum features and 20,000 molecular dynamics simulations, a new protein-ligand complex ML data set was published in the Nature sub-journal

Combining quantum features and 20,000 molecular dynamics simulations, a new protein-ligand complex ML data set was published in the Nature sub-journal

Editor | Dry Leaf Butterfly

Large-scale language models have greatly enhanced scientists’ ability to understand biology and chemistry, but structure-based drug discovery, quantum chemistry, and structure There are still few reliable methods in biology. Accurate biomolecule-ligand interaction datasets are urgently needed for large language models.

In order to solve this problem, researchers from the Institute of Biology of the Helmholtz Research Center München and the Technical University of Munich proposed MISATO. This is a data set that combines quantum mechanical (QM) properties of small molecules with associated molecular dynamics (MD) simulations of approximately 20,000 experimental protein-ligand complexes, and extensive validation of experimental data.

Starting from existing experimental structures, researchers systematically improved these structures using semi-empirical quantum mechanics. These include molecular dynamics simulations of a large number of protein-ligand complexes in pure water, with accumulation times exceeding 170 microseconds.

The team provides an example of a machine learning (ML) baseline model demonstrating improved accuracy by using this dataset. Provides machine learning experts with an easy entry point to implement next-generation artificial intelligence models for drug discovery.

The study is titled "MISATO: machine learning dataset of protein–ligand complexes for structure-based drug discovery" and was published in "Nature" on May 10, 2024. Computational Science》.

Combining quantum features and 20,000 molecular dynamics simulations, a new protein-ligand complex ML data set was published in the Nature sub-journal

In recent years, AI prediction technology has triggered a revolution in the scientific field. For example, AlphaFold can accurately predict protein structure. Although structure-guided drug discovery remains a huge challenge, the application of AI in this field is still shallow. Current methods face challenges such as accuracy, computational cost, and experimental dependence, and mostly focus on simple solutions and one-dimensional data processing. The complexity of three-dimensional protein-ligand complexes has been overlooked.

Although a variety of databases exist, no AI model has been shown to advance drug discovery due to limitations in data volume and lack of thermodynamic information. Unlike AlphaFold's achievements in the field of protein structure prediction, the AI ​​model is also limited by ignoring issues such as dynamics and chemical complexity, which affects its potential in biomolecule analysis and quantum chemistry.

Here, researchers from the Institute of Structural Biology of the Helmholtz Research Center München and the Technical University of Munich proposed a protein-ligand structure database based on experimental protein-ligand structures, MISATO (Molecular Interactions Are Structurally Optimized).

Researchers have shown that the database can help better train models in areas related to drug discovery and beyond. This includes quantum chemistry, general structural biology and bioinformatics.

Combining quantum features and 20,000 molecular dynamics simulations, a new protein-ligand complex ML data set was published in the Nature sub-journal

Illustration: MISATO combines QM data with MD-derived protein ligand dynamics. (Source: paper)

The team provides quantum chemistry-based structure management and refinement, including regularization of ligand geometries. The researchers augmented this database with missing dynamic and chemical information, including MD on time scales, allowing the detection of transient and mysterious states of certain systems. The latter is very important for successful drug design.

Combining quantum features and 20,000 molecular dynamics simulations, a new protein-ligand complex ML data set was published in the Nature sub-journal

Illustration: PDBbind database optimized according to quantum chemistry protocols. (Source: paper)

Therefore, the researchers supplemented the experimental data with the maximum number of physical parameters. This relieves the AI ​​model from the burden of learning all this information implicitly, allowing it to focus on the main learning task. The MISATO database provides a user-friendly format that can be imported directly into machine learning code.

Combining quantum features and 20,000 molecular dynamics simulations, a new protein-ligand complex ML data set was published in the Nature sub-journal

Illustration: Experimental validation of QM, MD and AI models. (Source: paper)

The team also provides various preprocessing scripts to filter and visualize the dataset. Furthermore, example AI baseline models are provided for calculating quantum chemical properties (chemical hardness and electron affinity), binding affinity calculations, and predicting protein flexibility or induced fit characteristics, allowing the data to be simplified. Moreover, QM, MD, and AI models have been extensively validated on experimental data.

The researchers hope to transform MISATO into a beneficial community project that will benefit the entire field of drug discovery.

Paper link:https://www.nature.com/articles/s43588-024-00627-2

The above is the detailed content of Combining quantum features and 20,000 molecular dynamics simulations, a new protein-ligand complex ML data set was published in the Nature sub-journal. For more information, please follow other related articles on the PHP Chinese website!

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What is Graph of Thought in Prompt EngineeringWhat is Graph of Thought in Prompt EngineeringApr 13, 2025 am 11:53 AM

Introduction In prompt engineering, “Graph of Thought” refers to a novel approach that uses graph theory to structure and guide AI’s reasoning process. Unlike traditional methods, which often involve linear s

Optimize Your Organisation's Email Marketing with GenAI AgentsOptimize Your Organisation's Email Marketing with GenAI AgentsApr 13, 2025 am 11:44 AM

Introduction Congratulations! You run a successful business. Through your web pages, social media campaigns, webinars, conferences, free resources, and other sources, you collect 5000 email IDs daily. The next obvious step is

Real-Time App Performance Monitoring with Apache PinotReal-Time App Performance Monitoring with Apache PinotApr 13, 2025 am 11:40 AM

Introduction In today’s fast-paced software development environment, ensuring optimal application performance is crucial. Monitoring real-time metrics such as response times, error rates, and resource utilization can help main

ChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOChatGPT Hits 1 Billion Users? 'Doubled In Just Weeks' Says OpenAI CEOApr 13, 2025 am 11:23 AM

“How many users do you have?” he prodded. “I think the last time we said was 500 million weekly actives, and it is growing very rapidly,” replied Altman. “You told me that it like doubled in just a few weeks,” Anderson continued. “I said that priv

Pixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaPixtral-12B: Mistral AI's First Multimodal Model - Analytics VidhyaApr 13, 2025 am 11:20 AM

Introduction Mistral has released its very first multimodal model, namely the Pixtral-12B-2409. This model is built upon Mistral’s 12 Billion parameter, Nemo 12B. What sets this model apart? It can now take both images and tex

Agentic Frameworks for Generative AI Applications - Analytics VidhyaAgentic Frameworks for Generative AI Applications - Analytics VidhyaApr 13, 2025 am 11:13 AM

Imagine having an AI-powered assistant that not only responds to your queries but also autonomously gathers information, executes tasks, and even handles multiple types of data—text, images, and code. Sounds futuristic? In this a

Applications of Generative AI in the Financial SectorApplications of Generative AI in the Financial SectorApr 13, 2025 am 11:12 AM

Introduction The finance industry is the cornerstone of any country’s development, as it drives economic growth by facilitating efficient transactions and credit availability. The ease with which transactions occur and credit

Guide to Online Learning and Passive-Aggressive AlgorithmsGuide to Online Learning and Passive-Aggressive AlgorithmsApr 13, 2025 am 11:09 AM

Introduction Data is being generated at an unprecedented rate from sources such as social media, financial transactions, and e-commerce platforms. Handling this continuous stream of information is a challenge, but it offers an

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

AI Hentai Generator

AI Hentai Generator

Generate AI Hentai for free.

Hot Article

R.E.P.O. Energy Crystals Explained and What They Do (Yellow Crystal)
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Best Graphic Settings
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. How to Fix Audio if You Can't Hear Anyone
3 weeks agoBy尊渡假赌尊渡假赌尊渡假赌
WWE 2K25: How To Unlock Everything In MyRise
4 weeks agoBy尊渡假赌尊渡假赌尊渡假赌

Hot Tools

DVWA

DVWA

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web application that is very vulnerable. Its main goals are to be an aid for security professionals to test their skills and tools in a legal environment, to help web developers better understand the process of securing web applications, and to help teachers/students teach/learn in a classroom environment Web application security. The goal of DVWA is to practice some of the most common web vulnerabilities through a simple and straightforward interface, with varying degrees of difficulty. Please note that this software

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Powerful PHP integrated development environment

WebStorm Mac version

WebStorm Mac version

Useful JavaScript development tools