search
HomeBackend DevelopmentPython TutorialPython实现抓取页面上链接的简单爬虫分享

除了C/C++以外,我也接触过不少流行的语言,PHP、java、javascript、python,其中python可以说是操作起来最方便,缺点最少的语言了。

前几天想写爬虫,后来跟朋友商量了一下,决定过几天再一起写。爬虫里重要的一部分是抓取页面中的链接,我在这里简单的实现一下。

首先我们需要用到一个开源的模块,requests。这不是python自带的模块,需要从网上下载、解压与安装:

复制代码 代码如下:

$ curl -OL https://github.com/kennethreitz/requests/zipball/master
$ python setup.py install

windows用户直接点击下载。解压后再本地使用命令python setup.py install安装即可。 https://github.com/kennethreitz/requests/zipball/master

这个模块的文档我也正在慢慢翻译,翻译完了就给大家传上来(英文版先发在附件里)。就像它的说明里面说的那样,built for human beings,为人类而设计。使用它很方便,自己看文档。最简单的,requests.get()就是发送一个get请求。

代码如下:

复制代码 代码如下:

# coding:utf-8
import re
import requests

# 获取网页内容
r = requests.get('http://www.163.com')
data = r.text

# 利用正则查找所有连接
link_list =re.findall(r"(? for url in link_list:
    print url

首先import进re和requests模块,re模块是使用正则表达式的模块。

data = requests.get('http://www.163.com'),向网易首页提交get请求,得到一个requests对象r,r.text就是获得的网页源代码,保存在字符串data中。

再利用正则查找data中所有的链接,我的正则写的比较粗糙,直接把href=""或href=''之间的信息获取到,这就是我们要的链接信息。

re.findall返回的是一个列表,用for循环遍历列表并输出:

这是我获取到的所有连接的一部分。

上面是获取网站里所有链接的一个简单的实现,没有处理任何异常,没有考虑到超链接的类型,代码仅供参考。requests模块文档见附件。

Statement
The content of this article is voluntarily contributed by netizens, and the copyright belongs to the original author. This site does not assume corresponding legal responsibility. If you find any content suspected of plagiarism or infringement, please contact admin@php.cn
What are some common operations that can be performed on Python arrays?What are some common operations that can be performed on Python arrays?Apr 26, 2025 am 12:22 AM

Pythonarrayssupportvariousoperations:1)Slicingextractssubsets,2)Appending/Extendingaddselements,3)Insertingplaceselementsatspecificpositions,4)Removingdeleteselements,5)Sorting/Reversingchangesorder,and6)Listcomprehensionscreatenewlistsbasedonexistin

In what types of applications are NumPy arrays commonly used?In what types of applications are NumPy arrays commonly used?Apr 26, 2025 am 12:13 AM

NumPyarraysareessentialforapplicationsrequiringefficientnumericalcomputationsanddatamanipulation.Theyarecrucialindatascience,machinelearning,physics,engineering,andfinanceduetotheirabilitytohandlelarge-scaledataefficiently.Forexample,infinancialanaly

When would you choose to use an array over a list in Python?When would you choose to use an array over a list in Python?Apr 26, 2025 am 12:12 AM

Useanarray.arrayoveralistinPythonwhendealingwithhomogeneousdata,performance-criticalcode,orinterfacingwithCcode.1)HomogeneousData:Arrayssavememorywithtypedelements.2)Performance-CriticalCode:Arraysofferbetterperformancefornumericaloperations.3)Interf

Are all list operations supported by arrays, and vice versa? Why or why not?Are all list operations supported by arrays, and vice versa? Why or why not?Apr 26, 2025 am 12:05 AM

No,notalllistoperationsaresupportedbyarrays,andviceversa.1)Arraysdonotsupportdynamicoperationslikeappendorinsertwithoutresizing,whichimpactsperformance.2)Listsdonotguaranteeconstanttimecomplexityfordirectaccesslikearraysdo.

How do you access elements in a Python list?How do you access elements in a Python list?Apr 26, 2025 am 12:03 AM

ToaccesselementsinaPythonlist,useindexing,negativeindexing,slicing,oriteration.1)Indexingstartsat0.2)Negativeindexingaccessesfromtheend.3)Slicingextractsportions.4)Iterationusesforloopsorenumerate.AlwayschecklistlengthtoavoidIndexError.

How are arrays used in scientific computing with Python?How are arrays used in scientific computing with Python?Apr 25, 2025 am 12:28 AM

ArraysinPython,especiallyviaNumPy,arecrucialinscientificcomputingfortheirefficiencyandversatility.1)Theyareusedfornumericaloperations,dataanalysis,andmachinelearning.2)NumPy'simplementationinCensuresfasteroperationsthanPythonlists.3)Arraysenablequick

How do you handle different Python versions on the same system?How do you handle different Python versions on the same system?Apr 25, 2025 am 12:24 AM

You can manage different Python versions by using pyenv, venv and Anaconda. 1) Use pyenv to manage multiple Python versions: install pyenv, set global and local versions. 2) Use venv to create a virtual environment to isolate project dependencies. 3) Use Anaconda to manage Python versions in your data science project. 4) Keep the system Python for system-level tasks. Through these tools and strategies, you can effectively manage different versions of Python to ensure the smooth running of the project.

What are some advantages of using NumPy arrays over standard Python arrays?What are some advantages of using NumPy arrays over standard Python arrays?Apr 25, 2025 am 12:21 AM

NumPyarrayshaveseveraladvantagesoverstandardPythonarrays:1)TheyaremuchfasterduetoC-basedimplementation,2)Theyaremorememory-efficient,especiallywithlargedatasets,and3)Theyofferoptimized,vectorizedfunctionsformathematicalandstatisticaloperations,making

See all articles

Hot AI Tools

Undresser.AI Undress

Undresser.AI Undress

AI-powered app for creating realistic nude photos

AI Clothes Remover

AI Clothes Remover

Online AI tool for removing clothes from photos.

Undress AI Tool

Undress AI Tool

Undress images for free

Clothoff.io

Clothoff.io

AI clothes remover

Video Face Swap

Video Face Swap

Swap faces in any video effortlessly with our completely free AI face swap tool!

Hot Tools

VSCode Windows 64-bit Download

VSCode Windows 64-bit Download

A free and powerful IDE editor launched by Microsoft

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

This project is in the process of being migrated to osdn.net/projects/mingw, you can continue to follow us there. MinGW: A native Windows port of the GNU Compiler Collection (GCC), freely distributable import libraries and header files for building native Windows applications; includes extensions to the MSVC runtime to support C99 functionality. All MinGW software can run on 64-bit Windows platforms.

EditPlus Chinese cracked version

EditPlus Chinese cracked version

Small size, syntax highlighting, does not support code prompt function

SAP NetWeaver Server Adapter for Eclipse

SAP NetWeaver Server Adapter for Eclipse

Integrate Eclipse with SAP NetWeaver application server.

Dreamweaver Mac version

Dreamweaver Mac version

Visual web development tools