Heim >Backend-Entwicklung >Python-Tutorial >Entschlüsselung der Matplotlib-Farbtabelle: Enthüllung der Geschichte hinter den Farben
Detaillierte Erklärung der Matplotlib-Farbtabelle: Die Geheimnisse hinter Farben enthüllen
Einführung:
Als eines der am häufigsten verwendeten Datenvisualisierungstools in Python verfügt Matplotlib über leistungsstarke Zeichenfunktionen und reichhaltige Farbtabellen. In diesem Artikel wird die Farbtabelle in matplotlib vorgestellt und die Geheimnisse hinter Farben erkundet. Wir werden uns mit den in matplotlib häufig verwendeten Farbtabellen befassen und spezifische Codebeispiele geben.
1. Farbtabelle in Matplotlib
2.1 Monochrom-Mapping
Monochrom-Mapping bedeutet, Daten einer einzelnen Farbe zuzuordnen. Unter diesen wird am häufigsten die Graustufenzuordnung verwendet. In matplotlib können wir „Gray“ oder „Greys“ verwenden, um die Graustufenzuordnung darzustellen. Ein weiteres gängiges Monochrom-Mapping ist das Heatmap-Mapping. In matplotlib können wir „hot“ verwenden, um die Heatmap-Zuordnung darzustellen.
Das Folgende ist ein Codebeispiel mit einer einzelnen Farbzuordnung:
import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 100) y = np.sin(x) plt.plot(x, y, color="gray") plt.plot(x, y+1, color="hot") plt.show()
Im obigen Code verwenden wir zwei verschiedene Farbzuordnungen, eine ist die Graustufenzuordnung „Grau“ und die andere ist die Heatmap-Zuordnung „Hot“.
2.2 Mehrfarbenzuordnung
Bei der Mehrfarbenzuordnung werden Daten einer Reihe von Farben zugeordnet. In Matplotlib können wir verschiedene Farbtabellen verwenden, um eine Mehrfarbenzuordnung zu implementieren. matplotlib bietet einen umfangreichen Satz integrierter Farbtabellen wie „viridis“, „autumn“, „cool“ usw.
Das Folgende ist ein Codebeispiel mit Mehrfarbenzuordnung:
import numpy as np import matplotlib.pyplot as plt x = np.linspace(0, 10, 100) y = np.sin(x) plt.plot(x, y, color="viridis") plt.plot(x, y+1, color="autumn") plt.show()
Im obigen Code verwenden wir zwei verschiedene Farbtabellen, eine ist „viridis“ und die andere ist „herbst“.
2. Anpassen der Farbtabelle
Zusätzlich zur Verwendung der integrierten Farbtabelle können wir die Farbtabelle auch anpassen. In matplotlib können wir „ListedColormap“ verwenden, um die Farbkarte anzupassen. Hier ist ein Beispiel einer benutzerdefinierten Farbtabelle:
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap x = np.linspace(0, 10, 100) y = np.sin(x) colors = ["#FF0000", "#00FF00", "#0000FF"] cmap = ListedColormap(colors) plt.scatter(x, y, c=x, cmap=cmap) plt.colorbar() plt.show()
Im obigen Code verwenden wir drei Farben, um die Farbtabelle anzupassen und die Daten x diesen drei Farben zuzuordnen. Verwenden Sie die Funktion plt.colorbar()
, um die Farbtabelle anzuzeigen.
Fazit:
In diesem Artikel haben wir die Farbtabelle in Matplotlib ausführlich vorgestellt und die Geheimnisse hinter den Farben gelüftet. Wir haben gelernt, wie Farben dargestellt werden, und das Konzept der Farbzuordnung besprochen. Wir geben auch spezifische Codebeispiele, die veranschaulichen, wie verschiedene Farbkarten verwendet werden. Ich hoffe, dass dieser Artikel den Lesern helfen kann, Farbtabellen in matplotlib besser zu verstehen und zu verwenden.
Das obige ist der detaillierte Inhalt vonEntschlüsselung der Matplotlib-Farbtabelle: Enthüllung der Geschichte hinter den Farben. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!