Heim > Artikel > Backend-Entwicklung > Fassen Sie die Wissenspunkte von Dekorateuren in Python zusammen
Dieser Artikel bringt Ihnen relevantes Wissen über Python, in dem hauptsächlich Probleme im Zusammenhang mit Dekoratoren vorgestellt werden, einschließlich Schließungen, Dekoratoren, Verwendung mehrerer Dekoratoren, Dekoratoren mit Parametern usw. Schauen wir uns das gemeinsam an. Ich hoffe, es wird hilfreich sein an alle.
Empfohlenes Lernen: Python-Video-Tutorial
Um zu verstehen, was ein Decorator (Dekorateur) ist, müssen wir zunächst das Konzept von Closure (Abschluss) kennen.
Abschluss, auch Abschlussfunktion oder geschlossene Funktion genannt: Wenn eine Funktion als Objekt zurückgegeben wird und auch externe Variablen mitnimmt, bildet sie einen Abschluss.
Nehmen Sie als Beispiel das Drucken von Hello World. Schauen wir uns zunächst an, wie die Struktur der verschachtelten Funktion aussehen sollte:
def print_msg(msg): def printer(): print(msg) printer()print_msg('Hello World')# Hello World
Das Ausführen von print_msg('Hello World')
entspricht dem Ausführen von printer(), d. h. print(msg)
wird ausgeführt, sodass Hello World
ausgegeben wird. print_msg('Hello World')
相当于执行了 printer()
,也就是执行 print(msg)
,所以将输出 Hello World
。
我们再来看一下如果是闭包,该是什么样的结构:
def print_msg(msg): def printer(): print(msg) return printer my_msg = print_msg('Hello World')my_msg()# Hello World
本例中的
printer
函数就是闭包。
执行 print_msg('Hello World')
实际上是返回了如下这样一个函数,它夹带了外部变量 'Hello World'
:
def printer(): print('Hello World')
于是调用 my_msg
就相当于执行 printer()
。
那么如何判断一个函数是否是闭包函数呢?闭包函数的 __closure__
属性里面定义了一个元组用于存放所有的cell对象,每个cell对象保存了这个闭包中所有的外部变量。而普通函数的 __closure__
属性为 None
。
def outer(content): def inner(): print(content) return innerprint(outer.__closure__) # Noneinner = outer('Hello World')print(inner.__closure__) # (<cell at 0x0000023FB1FD0B80: str object at 0x0000023FB1DC84F0>,)
由此可见 outer
函数不是闭包,而 inner
函数是闭包。
我们还可以查看闭包所携带的外部变量:
print(inner.__closure__[0].cell_contents)# Hello World
说了那么多,那么闭包究竟有什么用呢?闭包存在的意义就是它夹带了外部变量(私货),如果它不夹带私货,那么就和普通的函数没有任何区别。
闭包的优点如下:
我们先考虑这样一个场景,假设先前编写的一个函数已经实现了4个功能,为简便起见,我们用 print
语句来代表每一个具体的功能:
def module(): print('功能1') print('功能2') print('功能3') print('功能4')
现在,由于某种原因,你需要为 module
这个函数新增一个 功能5
,你完全可以这样修改:
def module(): print('功能1') print('功能2') print('功能3') print('功能4') print('功能5')
但在现实业务中,直接做出这样的修改往往是比较危险的(会变得不易于维护)。那么如何在不修改原函数的基础上去为它新添一个功能呢?
你可能已经想到了使用之前的闭包知识:
def func_5(original_module): def wrapper(): original_module() print('功能5') return wrapper
func_5
代表该函数主要用于实现 功能5
,我们接下来将 module
传入进去来观察效果:
new_module = func_5(module)new_module()# 功能1# 功能2# 功能3# 功能4# 功能5
可以看出,我们的新模块:new_module
已经实现了 功能5
。
在上面的例子中,函数
func_5
就是一个装饰器,它装饰了原来的模块(为它新添了一个功能)。
当然,Python有更简洁的写法(称之为语法糖),我们可以将@符号与装饰器函数的名称一起使用,并将其放置在要装饰的函数的定义上方:
def func_5(original_module): def wrapper(): original_module() print('功能5') return wrapper@func_5def module(): print('功能1') print('功能2') print('功能3') print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5
基于此,我们可以在不修改原函数的基础上完成计时任务(计算原函数的运行时间),如下:
def timer(func): def wrapper(): import time tic = time.time() func() toc = time.time() print('程序用时: {}s'.format(toc - tic)) return wrapper@timerdef make_list(): return [i * i for i in range(10**7)]my_list = make_list()# 程序用时: 0.8369960784912109s
事实上,my_list
并不是列表,直接打印会显示 None
,这是因为我们的 wrapper
函数没有设置返回值。如果需要获得 make_list
的返回值,可以这样修改 wrapper
函数:
def wrapper(): import time tic = time.time() a = func() toc = time.time() print('程序用时: {}s'.format(toc - tic)) return a
假如我们要为 module
新添 功能5
和 功能6
def func_5(original_module): def wrapper(): original_module() print('功能5') return wrapperdef func_6(original_module): def wrapper(): original_module() print('功能6') return wrapper@func_6@func_5def module(): print('功能1') print('功能2') print('功能3') print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5# 功能6
Die Funktion printer
in diesem Beispiel ist ein Abschluss.
Das Ausführen von print_msg('Hello World')
gibt tatsächlich eine Funktion wie die folgende zurück, die die externe Variable 'Hello World'
mitnimmt:
def module(): print('功能1') print('功能2') print('功能3') print('功能4')new_module = func_6(func_5(module))new_module()So Der Aufruf von
my_msg
entspricht der Ausführung von printer()
. __closure__
der Abschlussfunktion definiert ein Tupel zum Speichern aller Zellobjekte. Jedes Zellobjekt speichert alle externen Variablen im Abschluss. Das Attribut __closure__
einer normalen Funktion ist None
. @func_5@func_6def module(): print('功能1') print('功能2') print('功能3') print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能6# 功能5
outer
kein Abschluss ist, die Funktion inner
jedoch ein Abschluss. Wir können auch die externen Variablen anzeigen, die vom Verschluss getragen werden:
def pide(a, b): return a / b
print
-Anweisung, um jede spezifische Funktion darzustellen: 🎜def smart_pide(func): def wrapper(a, b): if b == 0: return '被除数不能为0!' else: return func(a, b) return wrapper🎜Jetzt müssen Sie aus irgendeinem Grund eine
Funktion 5
zur Funktion module
hinzufügen. Sie können es wie folgt ändern: 🎜@smart_pidedef pide(a, b): return a / bprint(pide(3, 0))# 被除数不能为0!print(pide(3, 1))# 3.0🎜Aber im echten Geschäft, Es ist oft gefährlich, solche Änderungen direkt vorzunehmen (die Wartung wird schwierig). Wie kann man also eine neue Funktion hinzufügen, ohne die ursprüngliche Funktion zu ändern? 🎜🎜🎜Vielleicht haben Sie daran gedacht, das vorherige Abschlusswissen zu verwenden: 🎜
def decorator(func): def wrapper(*args, **kwargs): # ... res = func(*args, **kwargs) # ... return res # 也可以不return return wrapper🎜
func_5
bedeutet, dass diese Funktion hauptsächlich zur Implementierung von Funktion 5
verwendet wird, wir werden als nächstes verwenden Übergeben Sie das Modul
, um den Effekt zu beobachten: 🎜def func_5_with_name(name=None): def func_5(original_module): def wrapper(): original_module() print('功能5由{}实现'.format(name)) return wrapper return func_5🎜Es ist ersichtlich, dass unser neues Modul:
new_module
Funktion 5
implementiert hat. 🎜🎜Im obigen Beispiel ist die Funktion func_5
ein Dekorator, der das Originalmodul dekoriert (eine neue Funktion hinzufügt). 🎜
🎜Natürlich gibt es in Python eine prägnantere Schreibweise (syntaktischer Zucker genannt). Wir können das @-Symbol mit dem Namen der Dekoratorfunktion verwenden und es über der Definition der zu dekorierenden Funktion platzieren: 🎜@func_5_with_name(name='若水')def module(): print('功能1') print('功能2') print('功能3') print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5由若水实现
class Timer: def __init__(self, func): self.func = func def __call__(self): import time tic = time.time() self.func() toc = time.time() print('用时: {}s'.format(toc - tic))@Timerdef make_list(): return [i**2 for i in range(10**7)]make_list()# 用时: 2.928966999053955s🎜Tatsächlich
my_list
Wenn es sich nicht um eine Liste handelt, wird beim direkten Drucken None
angezeigt. Dies liegt daran, dass unsere wrapper
-Funktion keinen Rückgabewert festlegt. Wenn Sie den Rückgabewert von make_list
benötigen, können Sie die wrapper
-Funktion wie folgt ändern: 🎜class Timer: def __init__(self, func): self.func = func def __call__(self, num): import time tic = time.time() res = self.func(num) toc = time.time() print('用时: {}s'.format(toc - tic)) return res@Timerdef make_list(num): return [i**2 for i in range(num)]my_list = make_list(10**7)# 用时: 2.8219943046569824sprint(len(my_list))# 10000000🎜3 Verwenden Sie mehrere Dekoratoren🎜🎜Wenn wir module code> hat
Function 5
und Function 6
(in numerischer Reihenfolge) hinzugefügt. Was soll ich also tun? 🎜🎜Glücklicherweise erlaubt Python die gleichzeitige Verwendung mehrerer Dekoratoren: 🎜class Func_5: def __init__(self, name=None): self.name = name def __call__(self, func): def wrapper(): func() print('功能5由{}实现'.format(self.name)) return wrapper@Func_5('若水')def module(): print('功能1') print('功能2') print('功能3') print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5由若水实现🎜Der obige Prozess entspricht tatsächlich: 🎜
class A: num = 100 def func1(self): print('功能1') @classmethod def func2(cls): print('功能2') print(cls.num) cls().func1()A.func2()# 功能2# 100# 功能1🎜Darüber hinaus ist zu beachten, dass bei Verwendung mehrerer Dekoratoren 🎜der Dekorator der Funktion am nächsten kommt Definition Die Funktion wird zuerst dekoriert. Wenn wir die Dekorationsreihenfolge ändern, ändert sich auch das Ausgabeergebnis: 4. Die dekorierte Funktion hat Parameter. Wie wird die Dekoration erstellt? Gerät? 🎜🎜Stellen Sie sich eine Funktion wie diese vor: 🎜
def pide(a, b): return a / b
当b=0 时会出现 ZeropisionError
。如何在避免修改该函数的基础上给出一个更加人性化的提醒呢?
因为我们的 pide
函数接收两个参数,所以我们的 wrapper
函数也应当接收两个参数:
def smart_pide(func): def wrapper(a, b): if b == 0: return '被除数不能为0!' else: return func(a, b) return wrapper
使用该装饰器进行装饰:
@smart_pidedef pide(a, b): return a / bprint(pide(3, 0))# 被除数不能为0!print(pide(3, 1))# 3.0
如果不知道要被装饰的函数有多少个参数,我们可以使用下面更为通用的模板:
def decorator(func): def wrapper(*args, **kwargs): # ... res = func(*args, **kwargs) # ... return res # 也可以不return return wrapper
我们之前提到的装饰器都没有带参数,即语法糖 @decorator
中没有参数,那么该如何写一个带参数的装饰器呢?
前面实现的装饰器都是两层嵌套函数,而带参数的装饰器是一个三层嵌套函数。
考虑这样一个场景。假如我们在为 module
添加新功能时,希望能够加上实现该功能的开发人员的花名,则可以这样构造装饰器(以 功能5
为例):
def func_5_with_name(name=None): def func_5(original_module): def wrapper(): original_module() print('功能5由{}实现'.format(name)) return wrapper return func_5
效果如下:
@func_5_with_name(name='若水')def module(): print('功能1') print('功能2') print('功能3') print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5由若水实现
对于这种三层嵌套函数,我们可以这样理解:当为 func_5_with_name
指定了参数后,func_5_with_name(name='若水')
实际上返回了一个 decorator
,于是 @func_5_with_name(name='若水')
就相当于 @decorator
。
将类作为装饰器,我们需要实现 __init__
方法和 __call__
方法。
以计时器为例,具体实现如下:
class Timer: def __init__(self, func): self.func = func def __call__(self): import time tic = time.time() self.func() toc = time.time() print('用时: {}s'.format(toc - tic))@Timerdef make_list(): return [i**2 for i in range(10**7)]make_list()# 用时: 2.928966999053955s
如果想要自定义生成列表的长度并获得列表(即被装饰的函数带有参数情形),我们就需要在 __call__
方法中传入相应的参数,具体如下:
class Timer: def __init__(self, func): self.func = func def __call__(self, num): import time tic = time.time() res = self.func(num) toc = time.time() print('用时: {}s'.format(toc - tic)) return res@Timerdef make_list(num): return [i**2 for i in range(num)]my_list = make_list(10**7)# 用时: 2.8219943046569824sprint(len(my_list))# 10000000
如果要构建带参数的类装饰器,则不能把 func
传入 __init__
中,而是传入到 __call__
中,同时 __init__
用来初始化类装饰器的参数。
接下来我们使用类装饰器来复现第五章节中的效果:
class Func_5: def __init__(self, name=None): self.name = name def __call__(self, func): def wrapper(): func() print('功能5由{}实现'.format(self.name)) return wrapper@Func_5('若水')def module(): print('功能1') print('功能2') print('功能3') print('功能4')module()# 功能1# 功能2# 功能3# 功能4# 功能5由若水实现
Python中有许多内置装饰器,这里仅介绍最常见的三种:@classmethod
、@staticmethod
和 @property
。
@classmethod
用于装饰类中的函数,使用它装饰的函数不需要进行实例化也可调用。需要注意的是,被装饰的函数不需要 self
参数,但第一个参数需要是表示自身类的 cls
参数,它可以来调用类的属性,类的方法,实例化对象等。
cls
代表类本身,self
代表实例本身。
具体请看下例:
class A: num = 100 def func1(self): print('功能1') @classmethod def func2(cls): print('功能2') print(cls.num) cls().func1()A.func2()# 功能2# 100# 功能1
@staticmethod
同样用来修饰类中的方法,使用它装饰的函数的参数没有任何限制(即无需传入 self
参数),并且可以不用实例化调用该方法。当然,实例化后调用该方法也是允许的。
具体如下:
class A: @staticmethod def add(a, b): return a + bprint(A.add(2, 3))# 5print(A().add(2, 3))# 5
使用 @property
装饰器,我们可以直接通过方法名来访问类方法,不需要在方法名后添加一对 ()
小括号。
class A: @property def printer(self): print('Hello World')a = A()a.printer# Hello World
除此之外,@property
还可以用来防止类的属性被修改。考虑如下场景
class A: def __init__(self): self.name = 'ABC'a = A()print(a.name)# ABCa.name = 1print(a.name)# 1
可以看出类中的属性 name
可以被随意修改。如果要防止修改,则可以这样做
class A: def __init__(self): self.name_ = 'ABC' @property def name(self): return self.name_ a = A()print(a.name)# ABCa.name = 1print(a.name)# AttributeError: can't set attribute
推荐学习:python视频教程
Das obige ist der detaillierte Inhalt vonFassen Sie die Wissenspunkte von Dekorateuren in Python zusammen. Für weitere Informationen folgen Sie bitte anderen verwandten Artikeln auf der PHP chinesischen Website!