首页 >科技周边 >人工智能 >仅用250美元,Hugging Face技术主管手把手教你微调Llama 3

仅用250美元,Hugging Face技术主管手把手教你微调Llama 3

WBOY
WBOY转载
2024-05-06 15:52:351251浏览

仅用250美元,Hugging Face技术主管手把手教你微调Llama 3

我们熟悉的Meta推出的Llama 3、Mistral AI推出的Mistral和Mixtral模型以及AI21实验室推出的Jamba等开源大语言模型已经成为OpenAI的竞争对手。

在大多数情况下,用户需要根据自己的数据对这些开源模型进行微调,才能充分释放模型的潜力。

在单个GPU上使用Q-Learning对比小的大语言模型(如Mistral)进行微调不是难事,但对像Llama 370b或Mixtral这样的大模型的高效微调直到现在仍然是一个挑战。

因此,Hugging Face技术主管Philipp Schmid介绍了如何利用PyTorch FSDP和Q-Lora,并在Hugging Face的TRL、Transformers、peft和datasets库的帮助下,对Llama 3进行微调。除了FSDP,作者还对PyTorch 2.2更新后的Flash Attention v2进行了适配。

微调主要步骤如下:

  • 设置开发环境
  • 创建并加载数据集
  • 使用 PyTorch FSDP、Q-Lora 和 SDPA 微调大语言模型
  • 测试模型并进行推理

请注意:本文进行的实验是在英伟达(NVIDIA)H100和英伟达(NVIDIA)A10G GPU上创建和验证的。配置文件和代码针对4xA10G GPU进行了优化,每个GPU均配备24GB内存。如果使用者有更多的算力,第3步提到的配置文件(yaml文件)需要做相应的修改。

FSDP Q-Lora 背景知识

基于Answer.AI、Q-Lora创始人Tim Dettmers和Hugging Face共同参与的合作项目,作者对Q-Lora和PyTorch FSDP(完全共享数据并行)所能提供的技术支持进行了总结。

FSDP和Q-Lora的结合使用能够让用户在2个消费级GPU(24GB)上就能对Llama 270b或Mixtral 8x7B进行微调,细节可参考下面文章。其中Hugging Face的PEFT库对此有至关重要的作用。

文章地址:https://www.answer.ai/posts/2024-03-06-fsdp-qlora.html

PyTorch FSDP 是一种数据 / 模型并行技术,它可以跨 GPU 分割模型,减少内存需求,并能够更有效地训练更大的模型。Q-LoRA 是一种微调方法,它利用量化和低秩适配器来有效地减少计算需求和内存占用。

设置开发环境

第一步是安装 Hugging Face Libraries 以及 Pyroch,包括 trl、transformers 和 datasets 等库。trl 是建立在 transformers 和 datasets 基础上的一个新库,能让对开源大语言模型进行微调、RLHF 和对齐变得更容易。

# Install Pytorch for FSDP and FA/SDPA%pip install "torch==2.2.2" tensorboard# Install Hugging Face libraries%pip install--upgrade "transformers==4.40.0" "datasets==2.18.0" "accelerate==0.29.3" "evaluate==0.4.1" "bitsandbytes==0.43.1" "huggingface_hub==0.22.2" "trl==0.8.6" "peft==0.10.0"

接下来,登录 Hugging Face 获取 Llama 3 70b 模型。

创建和加载数据集

环境设置完成后,我们就可以开始创建和准备数据集了。微调用的数据集应该包含使用者想要解决的任务的示例样本。阅读《如何在 2024 年使用 Hugging Face 微调 LLM》可以进一步了解如何创建数据集。

文章地址:https://www.philschmid.de/fine-tune-llms-in-2024-with-trl#3-create-and-prepare-the-dataset

作者使用了 HuggingFaceH4/no_robots 数据集,这是一个包含 10,000 条指令和样本的高质量数据集,并且经过了高质量的数据标注。这些数据可用于有监督微调(SFT),使语言模型更好地遵循人类指令。no_robots 数据集以 OpenAI 发表的 InstructGPT 论文中描述的人类指令数据集为原型,并且主要由单句指令组成。

{"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}{"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}{"messages": [{"role": "system", "content": "You are..."}, {"role": "user", "content": "..."}, {"role": "assistant", "content": "..."}]}

no_robots 数据集中的 10,000 个样本,被分为 9,500 个训练样本和 500 个测试样本,其中有些样本不包含 system 信息。作者使用 datasets 库加载数据集,添加了缺失的 system 信息,并将它们保存到单独的 json 文件中。示例代码如下所示:

from datasets import load_dataset# Convert dataset to OAI messagessystem_message = """You are Llama, an AI assistant created by Philipp to be helpful and honest. Your knowledge spans a wide range of topics, allowing you to engage in substantive conversations and provide analysis on complex subjects."""def create_conversation(sample):if sample["messages"][0]["role"] == "system":return sampleelse:sample["messages"] = [{"role": "system", "content": system_message}] + sample["messages"]return sample# Load dataset from the hubdataset = load_dataset("HuggingFaceH4/no_robots")# Add system message to each conversationcolumns_to_remove = list(dataset["train"].features)columns_to_remove.remove("messages")dataset = dataset.map(create_conversation, remove_columns=columns_to_remove,batched=False)# Filter out conversations which are corrupted with wrong turns, keep which have even number of turns after adding system messagedataset["train"] = dataset["train"].filter(lambda x: len(x["messages"][1:]) % 2 == 0)dataset["test"] = dataset["test"].filter(lambda x: len(x["messages"][1:]) % 2 == 0)# save datasets to diskdataset["train"].to_json("train_dataset.json", orient="records", force_ascii=False)dataset["test"].to_json("test_dataset.json", orient="records", force_ascii=False)

使用 PyTorch FSDP、Q-Lora 和 SDPA 来微调 LLM

接下来使用 PyTorch FSDP、Q-Lora 和 SDPA 对大语言模型进行微调。作者是在分布式设备中运行模型,因此需要使用 torchrun 和 python 脚本启动训练。

作者编写了 run_fsdp_qlora.py 脚本,其作用是从磁盘加载数据集、初始化模型和分词器并开始模型训练。脚本使用 trl 库中的 SFTTrainer 来对模型进行微调。

SFTTrainer 能够让对开源大语言模型的有监督微调更加容易上手,具体来说有以下几点:

格式化的数据集,包括格式化的多轮会话和指令(已使用)只对完整的内容进行训练,忽略只有 prompts 的情况(未使用)打包数据集,提高训练效率(已使用)支持参数高效微调技术,包括 Q-LoRA(已使用)为会话级任务微调初始化模型和分词器(未使用,见下文)

注意:作者使用的是类似于 Anthropic/Vicuna 的聊天模板,设置了「用户」和「助手」角色。这样做是因为基础 Llama 3 中的特殊分词器(<|begin_of_text|> 及 <|reserved_special_token_XX|>)没有经过训练。

这意味着如果要在模板中使用这些分词器,还需要对它们进行训练,并更新嵌入层和 lm_head,对内存会产生额外的需求。如果使用者有更多的算力,可以修改 run_fsdp_qlora.py 脚本中的 LLAMA_3_CHAT_TEMPLATE 环境变量。

在配置参数方面,作者使用了新的 TrlParser 变量,它允许我们在 yaml 文件中提供超参数,或者通过明确地将参数传递给 CLI 来覆盖配置文件中的参数,例如 —num_epochs 10。以下是在 4x A10G GPU 或 4x24GB GPU 上微调 Llama 3 70B 的配置文件。

%%writefile llama_3_70b_fsdp_qlora.yaml# script parametersmodel_id: "meta-llama/Meta-Llama-3-70b" # Hugging Face model iddataset_path: "."# path to datasetmax_seq_len:3072 # 2048# max sequence length for model and packing of the dataset# training parametersoutput_dir: "./llama-3-70b-hf-no-robot" # Temporary output directory for model checkpointsreport_to: "tensorboard" # report metrics to tensorboardlearning_rate: 0.0002# learning rate 2e-4lr_scheduler_type: "constant"# learning rate schedulernum_train_epochs: 3# number of training epochsper_device_train_batch_size: 1 # batch size per device during trainingper_device_eval_batch_size: 1# batch size for evaluationgradient_accumulation_steps: 2 # number of steps before performing a backward/update passoptim: adamw_torch # use torch adamw optimizerlogging_steps: 10# log every 10 stepssave_strategy: epoch # save checkpoint every epochevaluation_strategy: epoch # evaluate every epochmax_grad_norm: 0.3 # max gradient normwarmup_ratio: 0.03 # warmup ratiobf16: true # use bfloat16 precisiontf32: true # use tf32 precisiongradient_checkpointing: true # use gradient checkpointing to save memory# FSDP parameters: https://huggingface.co/docs/transformers/main/en/fsdpfsdp: "full_shard auto_wrap offload" # remove offload if enough GPU memoryfsdp_config:backward_prefetch: "backward_pre"forward_prefetch: "false"use_orig_params: "false"

注意:训练结束时,GPU 内存使用量会略有增加(约 10%),这是因为模型保存所带来的开销。所以使用时,请确保 GPU 上有足够的内存来保存模型。

在启动模型训练阶段,作者使用 torchrun 来更加灵活地运用样本,并且易于被调整,就像 Amazon SageMaker 及 Google Cloud Vertex AI 一样。

对于 torchrun 和 FSDP,作者需要对环境变量 ACCELERATE_USE_FSDP 和 FSDP_CPU_RAM_EFFICIENT_LOADING 进行设置,来告诉 transformers/accelerate 使用 FSDP 并以节省内存的方式加载模型。

注意:如果想不使用 CPU offloading 功能,需要更改 fsdp 的设置。这种操作只适用于内存大于 40GB 的 GPU。

本文使用以下命令启动训练:

!ACCELERATE_USE_FSDP=1 FSDP_CPU_RAM_EFFICIENT_LOADING=1 torchrun --nproc_per_node=4 ./scripts/run_fsdp_qlora.py --config llama_3_70b_fsdp_qlora.yaml

预期内存使用情况:

  • 使用 FSDP 进行全微调需要约 16 块 80GB 内存的 GPU
  • FSDP+LoRA 需要约 8 块 80GB 内存的 GPU
  • FSDP+Q-Lora 需要约 2 块 40GB 内存的 GPU
  • FSDP+Q-Lora+CPU offloading 技术需要 4 块 24GB 内存的 GPU,以及一块具备 22 GB 内存的 GPU 和 127 GB 的 CPU RAM,序列长度为 3072、batch 大小为 1。

在 g5.12xlarge 服务器上,基于包含 1 万个样本的数据集,作者使用 Flash Attention 对 Llama 3 70B 进行 3 个 epoch 的训练,总共需要 45 小时。每小时成本为 5.67 美元,总成本为 255.15 美元。这听起来很贵,但可以让你在较小的 GPU 资源上对 Llama 3 70B 进行微调。

如果我们将训练扩展到 4x H100 GPU,训练时间将缩短至大约 125 小时。如果假设 1 台 H100 的成本为 5-10 美元 / 小时,那么总成本将在 25-50 美元之间。

我们需要在易用性和性能之间做出权衡。如果能获得更多更好的计算资源,就能减少训练时间和成本,但即使只有少量资源,也能对 Llama 3 70B 进行微调。对于 4x A10G GPU 而言,需要将模型加载到 CPU 上,这就降低了总体 flops,因此成本和性能会有所不同。

注意:在作者进行的评估和测试过程中,他注意到大约 40 个最大步长(将 80 个样本堆叠为长度为三千的序列)就足以获得初步结果。40 个步长的训练时间约为 1 小时,成本约合 5 美元。

可选步骤:将 LoRA 的适配器融入原始模型

使用 QLoRA 时,作者只训练适配器而不对整个模型做出修改。这意味着在训练过程中保存模型时,只保存适配器权重,而不保存完整模型。

如果使用者想保存完整的模型,使其更容易与文本生成推理器一起使用,则可以使用 merge_and_unload 方法将适配器权重合并到模型权重中,然后使用 save_pretrained 方法保存模型。这将保存一个默认模型,可用于推理。

注意:CPU 内存需要大于 192GB。

#### COMMENT IN TO MERGE PEFT AND BASE MODEL ##### from peft import AutoPeftModelForCausalLM# # Load PEFT model on CPU# model = AutoPeftModelForCausalLM.from_pretrained(# args.output_dir,# torch_dtype=torch.float16,# low_cpu_mem_usage=True,# )# # Merge LoRA and base model and save# merged_model = model.merge_and_unload()# merged_model.save_pretrained(args.output_dir,safe_serialization=True, max_shard_size="2GB")

模型测试和推理

训练完成后,我们要对模型进行评估和测试。作者从原始数据集中加载不同的样本,并手动评估模型。评估生成式人工智能模型并非易事,因为一个输入可能有多个正确的输出。阅读《评估 LLMs 和 RAG,一个使用 Langchain 和 Hugging Face 的实用案例》可以了解到关于评估生成模型的相关内容。

文章地址:https://www.philschmid.de/evaluate-llm

import torchfrom peft import AutoPeftModelForCausalLMfrom transformers import AutoTokenizerpeft_model_id = "./llama-3-70b-hf-no-robot"# Load Model with PEFT adaptermodel = AutoPeftModelForCausalLM.from_pretrained(peft_model_id,torch_dtype=torch.float16,quantization_config= {"load_in_4bit": True},device_map="auto")tokenizer = AutoTokenizer.from_pretrained(peft_model_id)

接下来加载测试数据集,尝试生成指令。

from datasets import load_datasetfrom random import randint# Load our test dataseteval_dataset = load_dataset("json", data_files="test_dataset.json", split="train")rand_idx = randint(0, len(eval_dataset))messages = eval_dataset[rand_idx]["messages"][:2]# Test on sampleinput_ids = tokenizer.apply_chat_template(messages,add_generation_prompt=True,return_tensors="pt").to(model.device)outputs = model.generate(input_ids,max_new_tokens=512,eos_token_id= tokenizer.eos_token_id,do_sample=True,temperature=0.6,top_p=0.9,)response = outputs[0][input_ids.shape[-1]:]print(f"**Query:**\n{eval_dataset[rand_idx]['messages'][1]['content']}\n")print(f"**Original Answer:**\n{eval_dataset[rand_idx]['messages'][2]['content']}\n")print(f"**Generated Answer:**\n{tokenizer.decode(response,skip_special_tokens=True)}")# **Query:**# How long was the Revolutionary War?# **Original Answer:**# The American Revolutionary War lasted just over seven years. The war started on April 19, 1775, and ended on September 3, 1783.# **Generated Answer:**# The Revolutionary War, also known as the American Revolution, was an 18th-century war fought between the Kingdom of Great Britain and the Thirteen Colonies. The war lasted from 1775 to 1783.

至此,主要流程就介绍完了,心动不如行动,赶紧从第一步开始操作吧。

以上是仅用250美元,Hugging Face技术主管手把手教你微调Llama 3的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:51cto.com。如有侵权,请联系admin@php.cn删除