搜索
首页科技周边人工智能详解Latte:去年底上线的全球首个开源文生视频DiT

随着 Sora 发布成功,视频 DiT 模型引起了广泛关注和讨论。设计稳定的超大规模神经网络一直是视觉生成领域研究的重点。DiT 模型的成功为图像生成的规模化带来了新的可能性。

然而,由于视频数据的高度结构化和复杂性,将 DiT 扩展到视频生成领域是一项具有挑战性的任务。一支由上海人工智能实验室的研究团队和其他机构联合组成的团队,通过大规模的实验回答了这一问题。

去年11月,该团队已经发布了一款名为Latte的自研模型,其技术与Sora有相似之处。Latte是全球首个开源文生视频DiT,受到了广泛关注。许多开源框架如Open-Sora Plan (PKU)和Open-Sora (ColossalAI)都在使用和参考Latte的模型设计。

详解Latte:去年底上线的全球首个开源文生视频DiT

  • 开源链接:https://github.com/Vchitect/Latte
  • 项目主页:https://maxin-cn.github.io/latte_project/
  • 论文链接:https://arxiv.org/pdf/2401.03048v1.pdf

先来看下Latte的视频生成效果。

详解Latte:去年底上线的全球首个开源文生视频DiT

方法介绍

总的来说,Latte包含两个关键模块:预先训练的VAE和视频DiT。在预先训练的VAE中,编码器负责将视频逐帧从像素空间压缩到潜在空间,而视频DiT则负责提取token并进行时空建模以对潜在表征进行处理,最后,VAE解码器将特征映射回像素空间以生成视频。为了获得最佳的视频质量,研究者专注于Latte设计中的两个重要方面,即视频DiT模型的整体结构设计和模型训练的最佳实践细节。

(1)Latte 整体模型结构设计探究

详解Latte:去年底上线的全球首个开源文生视频DiT

图 1. Latte 模型结构及其变体

作者提出了 4 种不同的 Latte 变体 (图 1),从时空注意力机制的角度设计了两种 Transformer 模块,同时在每种模块中分别研究了两种变体(Variant):

1. 单注意力机制模块,每个模块中只包含时间或者空间注意力

  • 时空交错式建模 (Variant 1): 时间模块插入到各个空间模块之后。
  • 时空顺序式建模 (Variant 2): 时间模块整体置于空间模块之后。

2. 多注意力机制模块,每个模块中同时包含时间与空间注意力机制 (Open-sora所参考变体)

  • 串联式时空注意力机制 (Variant 3): 时空注意力机制串行建模。
  • 并联式时空注意力机制 (Variant 4): 时空注意力机制并行建模并特征融合。

实验表明 (图 2),通过对 4 种模型变体设置相同的参数量,变体 4 相较于其他三种变体在 FLOPS 上有着明显的差异,因此 FVD 上也相对最高,其他 3 种变体总体性能类似,变体 1 取得了最优异的性能,作者计划未来在大规模的数据上做更加细致的讨论。

详解Latte:去年底上线的全球首个开源文生视频DiT

图 2. 模型结构 FVD

(2)Latte 模型与训练细节的最优设计探究(The best practices)

除了模型总体结构设计,作者还探究了其他模型与训练中影响生成效果的因素。

1.Token 提取:探究了单帧 token(a)和时空 token(b)两种方式,前者只在空间层面压缩 token,后者同时压缩时空信息。实验显示单帧 token 要优于时空 token(图 4)。与 Sora 进行比较,作者猜测 Sora 提出的时空 token 是通过视频 VAE 进行了时间维度的预压缩,而在隐空间上与 Latte 的设计类似都只进行了单帧 token 的处理。

详解Latte:去年底上线的全球首个开源文生视频DiT

图 3. Token 提取方式,(a) 单帧 token 和 (b) 时空 token

详解Latte:去年底上线的全球首个开源文生视频DiT

图 4. Token 提取 FVD

2. 条件注入模式:探究了(a)S-AdaLN 和(b)all tokens 两种方式 (图 5)。S-AdaLN 通过 MLP 将条件信息转换为归一化中的变量注入到模型中。All token 形式将所有条件转化为统一的 token 作为模型的输入。实验证明,S-AdaLN 的方式相较于 all token 对于获得高质量的结果更加有效 (图 6)。原因是,S-AdaLN 可以使信息被直接注入到每一个模块。而 all token 需要将条件信息从输入逐层传递到最后,存在着信息流动过程中的损失。

详解Latte:去年底上线的全球首个开源文生视频DiT

图 5. (a) S-AdaLN 和 (b) all tokens。

详解Latte:去年底上线的全球首个开源文生视频DiT

图 6. 条件注入方式 FVD

3. 时空位置编码:探究了绝对位置编码与相对位置编码。不同的位置编码对最后视频质量影响很小 (图 7)。由于生成时长较短,位置编码的不同不足以影响视频质量,对于长视频生成,这一因素需要被重新考虑。

详解Latte:去年底上线的全球首个开源文生视频DiT

图 7. 位置编码方式 FVD

4. 模型初始化:探究使用 ImageNet 预训练参数初始化对模型性能的影响。实验表明,使用 ImageNet 初始化的模型具有较快的收敛速度,然而,随着训练的进行,随机初始化的模型却取得了较好的结果 (图 8)。可能的原因在于 ImageNet 与训练集 FaceForensics 存在着比较大的分布差异,因此未能对模型的最终结果起到促进作用。而对于文生视频任务而言,该结论需要被重新考虑。在通用数据集的分布上,图像与视频的内容空间分布相似,使用预训练 T2I 模型对于 T2V 可以起到极大的促进作用。

详解Latte:去年底上线的全球首个开源文生视频DiT

图 8. 初始化参数 FVD

5. 图像视频联合训练:将视频与图像压缩为统一 token 进行联合训练,视频 token 负责优化全部参数,图像 token 只负责优化空间参数。联合训练对于最终的结果有着显著的提升 (表 2 和表 3),无论是图片 FID,还是视频 FVD,通过联合训练都得到了降低,该结果与基于 UNet 的框架 [2][3] 是一致的。

6. 模型尺寸:探究了 4 种不同的模型尺寸,S,B,L 和 XL (表 1)。扩大视频 DiT 规模对于提高生成样本质量有着显著的帮助 (图 9)。该结论也证明了在视频扩散模型中使用 Transformer 结构对于后续 scaling up 的正确性。

详解Latte:去年底上线的全球首个开源文生视频DiT

表 1. Latte 不同尺寸模型规模

详解Latte:去年底上线的全球首个开源文生视频DiT

图 9. 模型尺寸 FVD

定性与定量分析

作者分别在 4 个学术数据集(FaceForensics,TaichiHD,SkyTimelapse 以及 UCF101)进行了训练。定性与定量(表 2 和表 3)结果显示 Latte 均取得了最好的性能,由此可以证明模型整体设计是具有优异性的。

详解Latte:去年底上线的全球首个开源文生视频DiT

表 2. UCF101 图片质量评估

详解Latte:去年底上线的全球首个开源文生视频DiT

表 3. Latte 与 SoTA 视频质量评估

文生视频扩展

为了进一步证明 Latte 的通用性能,作者将 Latte 扩展到了文生视频任务,利用预训练 PixArt-alpha [4] 模型作为空间参数初始化,按照最优设计的原则,在经过一段时间的训练之后,Latte 已经初步具备了文生视频的能力。后续计划通过扩大规模验证 Latte 生成能力的上限。

讨论与总结

Latte 作为全世界首个开源文生视频 DiT,已经取得了很有前景的结果,但由于计算资源的巨大差异,在生成清晰度,流畅度上以及时长上与 Sora 相比还具有不小的差距。团队欢迎并在积极寻求各种合作,希望通过开源的力量,打造出性能卓越的自主研发大规模通用视频生成模型。

以上是详解Latte:去年底上线的全球首个开源文生视频DiT的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
如何使用Huggingface Smollm建立个人AI助手如何使用Huggingface Smollm建立个人AI助手Apr 18, 2025 am 11:52 AM

利用“设备” AI的力量:建立个人聊天机器人CLI 在最近的过去,个人AI助手的概念似乎是科幻小说。 想象一下科技爱好者亚历克斯(Alex)梦见一个聪明的本地AI同伴 - 不依赖

通过斯坦福大学激动人心的新计划,精神健康的AI专心分析通过斯坦福大学激动人心的新计划,精神健康的AI专心分析Apr 18, 2025 am 11:49 AM

他们的首届AI4MH发射于2025年4月15日举行,著名的精神科医生兼神经科学家汤姆·因斯尔(Tom Insel)博士曾担任开幕式演讲者。 Insel博士因其在心理健康研究和技术方面的杰出工作而闻名

2025年WNBA选秀课程进入联盟成长并与在线骚扰作斗争2025年WNBA选秀课程进入联盟成长并与在线骚扰作斗争Apr 18, 2025 am 11:44 AM

恩格伯特说:“我们要确保WNBA仍然是每个人,球员,粉丝和公司合作伙伴,感到安全,重视和授权的空间。” anno

Python内置数据结构的综合指南 - 分析VidhyaPython内置数据结构的综合指南 - 分析VidhyaApr 18, 2025 am 11:43 AM

介绍 Python擅长使用编程语言,尤其是在数据科学和生成AI中。 在处理大型数据集时,有效的数据操作(存储,管理和访问)至关重要。 我们以前涵盖了数字和ST

与替代方案相比,Openai新型号的第一印象与替代方案相比,Openai新型号的第一印象Apr 18, 2025 am 11:41 AM

潜水之前,一个重要的警告:AI性能是非确定性的,并且特定于高度用法。简而言之,您的里程可能会有所不同。不要将此文章(或任何其他)文章作为最后一句话 - 目的是在您自己的情况下测试这些模型

AI投资组合|如何为AI职业建立投资组合?AI投资组合|如何为AI职业建立投资组合?Apr 18, 2025 am 11:40 AM

建立杰出的AI/ML投资组合:初学者和专业人士指南 创建引人注目的投资组合对于确保在人工智能(AI)和机器学习(ML)中的角色至关重要。 本指南为建立投资组合提供了建议

代理AI对安全操作可能意味着什么代理AI对安全操作可能意味着什么Apr 18, 2025 am 11:36 AM

结果?倦怠,效率低下以及检测和作用之间的差距扩大。这一切都不应该令任何从事网络安全工作的人感到震惊。 不过,代理AI的承诺已成为一个潜在的转折点。这个新课

Google与Openai:AI为学生打架Google与Openai:AI为学生打架Apr 18, 2025 am 11:31 AM

直接影响与长期伙伴关系? 两周前,Openai提出了强大的短期优惠,在2025年5月底之前授予美国和加拿大大学生免费访问Chatgpt Plus。此工具包括GPT-4O,A A A A A

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
1 个月前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
1 个月前By尊渡假赌尊渡假赌尊渡假赌
威尔R.E.P.O.有交叉游戏吗?
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

PhpStorm Mac 版本

PhpStorm Mac 版本

最新(2018.2.1 )专业的PHP集成开发工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器