搜索
首页科技周边人工智能多维张量与线性层的交互原理是什么?

多维张量与线性层的交互原理是什么?

线性层是深度学习中最常用的层之一,在神经网络中起着重要作用。它被广泛应用于图像分类、物体检测、语音识别等任务。本文将重点介绍线性层在多维张量上的作用。

首先,我们来回顾一下线性层的基本原理。对于一个输入张量x,线性层的计算公式如下:

y=Wx+b

其中,W和b分别是线性层的参数,W的形状为(n_out, n_in),b的形状为(n_out,)。n_in表示输入张量的大小,n_out表示输出张量的大小。假设输入张量是一个一维张量x∈R^n_in,输出张量也是一个一维张量y∈R^n_out。在线性层中,输入张量经过权重矩阵W的线性变换,再加上偏置向量b,得到输出张量y。这个线性变换可以表示为y = Wx + b。其中,W的每一行代表了线性层的一个输出神经元的权重向量,b的每一个元素表示了对应输出神经元的偏置值。最终的输出张量y的每一个元素都是通过对应的输出神经元的权重向量和输入张量进行点积,再加上对应的偏置值得到的。

现在,假设我们有一个多维张量X,它的形状为(n_1,n_2,…,n_k)。我们需要将它传递给一个线性层,以产生一个输出张量Y,它的形状为(m_1,m_2,…,m_l)。这时,我们该怎么做呢?

首先,我们需要将X展平成一个一维张量。这个过程通常被称为“拉平”操作,可以使用PyTorch中的view函数来实现。具体地,我们可以将X的形状变为(n_1times n_2times…times n_k,),即将所有维度的元素都排成一列。这样,我们就得到了一个一维张量x,它的大小为n_{in}=n_1times n_2times…times n_k。

接下来,我们可以将x传递给线性层,得到输出张量y。具体地,我们可以使用线性层的计算公式:

y=Wx+b

这里,W的形状为(m_{out},n_{in}),b的形状为(m_{out},),m_{out}表示输出张量的大小。乘法Wx的结果是一个形状为(m_{out},)的一维张量,加上偏置b后,得到形状为(m_{out},)的输出张量y。

最后,我们需要将y转换回多维张量的形式。具体地,我们可以使用PyTorch中的view函数,将y的形状变为(m_1,m_2,…,m_l)。这样,我们就得到了最终的输出张量Y。

需要注意的是,在将多维张量展平成一维张量时,我们需要保证张量中的元素顺序不变。例如,假设我们有一个形状为(2,3)的二维张量X:

X=begin{bmatrix}1&2&34&5&6end{bmatrix}

我们需要将它展平成一个一维张量。如果我们使用view(-1)来实现,得到的结果将是:

x=[1,2,3,4,5,6]

这里,我们将(1,2)和(4,5)这两行元素排在了一起,导致顺序发生了变化。因此,正确的操作应该是使用view(-1)来展平张量,然后再使用view(1,-1)将其转换回原来的形状:

x=begin{bmatrix}1&2&3&4&5&6end{bmatrix}

X=begin{bmatrix}1&2&34&5&6end{bmatrix}

这样,我们就可以正确地将多维张量传递给线性层,并得到正确的输出张量。

需要注意的是,线性层在多维张量上的作用可以看作是对每个样本进行独立的线性变换。例如,假设我们有一个形状为(N,C,H,W)的四维张量X,其中N表示样本数,C表示通道数,H和W分别表示高度和宽度。我们可以将X沿着第一维度(即样本维度)展开成一个形状为(N,Ctimes Htimes W)的二维张量,然后将其传递给线性层。线性层会对每个样本进行独立的线性变换,得到形状为(N,m_{out})的输出张量Y。最后,我们可以将Y沿着第一维度恢复成原来的形状(N,m_1,m_2,…,m_l)。

总之,线性层在多维张量上的作用可以看作是对每个样本进行独立的线性变换。在实际应用中,我们通常会将多维张量展平成一维张量,然后将其传递给线性层。展平操作需要保证元素的顺序不变,否则会导致计算结果错误。最后,我们需要将输出张量恢复成原来的形状,以便进行下一步计算。

以上是多维张量与线性层的交互原理是什么?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:网易伏羲。如有侵权,请联系admin@php.cn删除
解读CRISP-ML(Q):机器学习生命周期流程解读CRISP-ML(Q):机器学习生命周期流程Apr 08, 2023 pm 01:21 PM

译者 | 布加迪审校 | 孙淑娟目前,没有用于构建和管理机器学习(ML)应用程序的标准实践。机器学习项目组织得不好,缺乏可重复性,而且从长远来看容易彻底失败。因此,我们需要一套流程来帮助自己在整个机器学习生命周期中保持质量、可持续性、稳健性和成本管理。图1. 机器学习开发生命周期流程使用质量保证方法开发机器学习应用程序的跨行业标准流程(CRISP-ML(Q))是CRISP-DM的升级版,以确保机器学习产品的质量。CRISP-ML(Q)有六个单独的阶段:1. 业务和数据理解2. 数据准备3. 模型

2023年机器学习的十大概念和技术2023年机器学习的十大概念和技术Apr 04, 2023 pm 12:30 PM

机器学习是一个不断发展的学科,一直在创造新的想法和技术。本文罗列了2023年机器学习的十大概念和技术。 本文罗列了2023年机器学习的十大概念和技术。2023年机器学习的十大概念和技术是一个教计算机从数据中学习的过程,无需明确的编程。机器学习是一个不断发展的学科,一直在创造新的想法和技术。为了保持领先,数据科学家应该关注其中一些网站,以跟上最新的发展。这将有助于了解机器学习中的技术如何在实践中使用,并为自己的业务或工作领域中的可能应用提供想法。2023年机器学习的十大概念和技术:1. 深度神经网

基于因果森林算法的决策定位应用基于因果森林算法的决策定位应用Apr 08, 2023 am 11:21 AM

译者 | 朱先忠​审校 | 孙淑娟​在我之前的​​博客​​中,我们已经了解了如何使用因果树来评估政策的异质处理效应。如果你还没有阅读过,我建议你在阅读本文前先读一遍,因为我们在本文中认为你已经了解了此文中的部分与本文相关的内容。为什么是异质处理效应(HTE:heterogenous treatment effects)呢?首先,对异质处理效应的估计允许我们根据它们的预期结果(疾病、公司收入、客户满意度等)选择提供处理(药物、广告、产品等)的用户(患者、用户、客户等)。换句话说,估计HTE有助于我

使用PyTorch进行小样本学习的图像分类使用PyTorch进行小样本学习的图像分类Apr 09, 2023 am 10:51 AM

近年来,基于深度学习的模型在目标检测和图像识别等任务中表现出色。像ImageNet这样具有挑战性的图像分类数据集,包含1000种不同的对象分类,现在一些模型已经超过了人类水平上。但是这些模型依赖于监督训练流程,标记训练数据的可用性对它们有重大影响,并且模型能够检测到的类别也仅限于它们接受训练的类。由于在训练过程中没有足够的标记图像用于所有类,这些模型在现实环境中可能不太有用。并且我们希望的模型能够识别它在训练期间没有见到过的类,因为几乎不可能在所有潜在对象的图像上进行训练。我们将从几个样本中学习

LazyPredict:为你选择最佳ML模型!LazyPredict:为你选择最佳ML模型!Apr 06, 2023 pm 08:45 PM

本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。 摘要本文讨论使用LazyPredict来创建简单的ML模型。LazyPredict创建机器学习模型的特点是不需要大量的代码,同时在不修改参数的情况下进行多模型拟合,从而在众多模型中选出性能最佳的一个。​本文包括的内容如下:​简介​LazyPredict模块的安装​在分类模型中实施LazyPredict

Mango:基于Python环境的贝叶斯优化新方法Mango:基于Python环境的贝叶斯优化新方法Apr 08, 2023 pm 12:44 PM

译者 | 朱先忠审校 | 孙淑娟引言模型超参数(或模型设置)的优化可能是训练机器学习算法中最重要的一步,因为它可以找到最小化模型损失函数的最佳参数。这一步对于构建不易过拟合的泛化模型也是必不可少的。优化模型超参数的最著名技术是穷举网格搜索和随机网格搜索。在第一种方法中,搜索空间被定义为跨越每个模型超参数的域的网格。通过在网格的每个点上训练模型来获得最优超参数。尽管网格搜索非常容易实现,但它在计算上变得昂贵,尤其是当要优化的变量数量很大时。另一方面,随机网格搜索是一种更快的优化方法,可以提供更好的

人工智能自动获取知识和技能,实现自我完善的过程是什么人工智能自动获取知识和技能,实现自我完善的过程是什么Aug 24, 2022 am 11:57 AM

实现自我完善的过程是“机器学习”。机器学习是人工智能核心,是使计算机具有智能的根本途径;它使计算机能模拟人的学习行为,自动地通过学习来获取知识和技能,不断改善性能,实现自我完善。机器学习主要研究三方面问题:1、学习机理,人类获取知识、技能和抽象概念的天赋能力;2、学习方法,对生物学习机理进行简化的基础上,用计算的方法进行再现;3、学习系统,能够在一定程度上实现机器学习的系统。

超参数优化比较之网格搜索、随机搜索和贝叶斯优化超参数优化比较之网格搜索、随机搜索和贝叶斯优化Apr 04, 2023 pm 12:05 PM

本文将详细介绍用来提高机器学习效果的最常见的超参数优化方法。 译者 | 朱先忠​审校 | 孙淑娟​简介​通常,在尝试改进机器学习模型时,人们首先想到的解决方案是添加更多的训练数据。额外的数据通常是有帮助(在某些情况下除外)的,但生成高质量的数据可能非常昂贵。通过使用现有数据获得最佳模型性能,超参数优化可以节省我们的时间和资源。​顾名思义,超参数优化是为机器学习模型确定最佳超参数组合以满足优化函数(即,给定研究中的数据集,最大化模型的性能)的过程。换句话说,每个模型都会提供多个有关选项的调整“按钮

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
2 周前By尊渡假赌尊渡假赌尊渡假赌
仓库:如何复兴队友
4 周前By尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island冒险:如何获得巨型种子
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

Atom编辑器mac版下载

Atom编辑器mac版下载

最流行的的开源编辑器