继上次盘点《数据科学家95%的时间都在使用的11个基本图表》之后,今天将为大家带来数据科学家95%的时间都在使用的11个基本分布。掌握这些分布,有助于我们更深入地理解数据的本质,并在数据分析和决策过程中做出更准确的推断和预测。
1. 正态分布
正态分布(Normal Distribution),也被称为高斯分布(Gaussian Distribution),是一种连续型概率分布。它具有一个对称的钟形曲线,以均值(μ)为中心,标准差(σ)为宽度。正态分布在统计学、概率论、工程学等多个领域具有重要的应用价值。
正态分布的概率密度函数可以表示为:
概率密度函数表示在给定值x附近的单位区间内正态分布的随机变量取值的概率密度。其中,μ表示均值,σ表示标准差
正态分布在实际中的应用是广泛的。例如,人的身高和体重分布近似于正态分布。此外,考试成绩通常呈正态分布,高分和低分的人数较少,而中间分数的人数较多。这种分布模式在许多领域都有重要的应用价值
2. 伯努利分布
伯努利分布(Bernoulli Distribution)是一种离散型概率分布,用于描述只有两种可能结果的单次随机试验。伯努利试验可以是正面或反面,成功或失败,是或否等。例如,抛硬币、检测产品是否合格、某人是否购买某种产品等。
伯努利分布的概率质量函数为:
在伯努利分布中,p表示成功的概率,其取值范围为0到1。当p等于0.5时,伯努利分布就趋近于均匀分布
伯努利分布在实际中的应用:例如二项分布就是伯努利分布的n次独立重复试验。
3. 二项分布
二项分布(Binomial Distribution)是一种离散型概率分布,用于描述在n次独立重复试验中成功次数的概率分布。每次试验只有两种可能的结果:成功(记为1)或失败(记为0)。成功的概率为p,失败的概率为1-p。
二项分布的概率质量函数可以表示为:
其中,P(X=k)表示成功次数为k的概率,是组合数,表示从n次试验中选择k次成功的组合数。p是成功的概率,取值范围在0和1之间。n是试验次数。
二项分布在实际中的应用非常广泛。举例来说,在医学研究中,我们可以利用二项分布来计算患者接受某种治疗的成功率。在工程领域中,我们可以使用二项分布来评估产品在生产过程中的合格率。这些都是二项分布在实际应用中的重要例子
4. 泊松分布
泊松分布(Poisson Distribution)是一种离散型概率分布,用于描述在固定时间内,事件发生的次数的概率分布。泊松分布适用于那些事件相互独立,且平均发生速率恒定的情况。
泊松分布的概率密度函数是:
在这里,P(X=k)代表在固定时间内事件发生k次的概率,λ表示事件的平均发生速率,也就是单位时间内事件发生的平均次数。e是自然常数,约等于2.718。k表示事件发生的次数
泊松分布在实际中的应用十分广泛,比如在电话呼叫中心,每分钟打进的电话数量可以看作是泊松分布,其中平均每分钟打进的电话数量为λ
5. 指数分布
指数分布(Exponential Distribution)是一种连续型概率分布,用于描述在固定时间内,事件发生的概率。指数分布适用于那些事件相互独立,且平均发生速率恒定的情况。
指数分布的概率密度函数为:
在给定时间x内事件发生的概率密度用f(x,λ)表示。λ表示事件的平均发生速率,即单位时间内事件发生的平均次数。e是自然常数,约等于2.718
指数分布在现实生活中有许多应用。例如,在放射性衰变中,放射性原子核的衰变时间可以被视为指数分布。这意味着衰变时间的概率分布符合指数函数。而平均衰变时间则对应着指数函数的参数λ
6. 伽玛分布
Gamma分布是一种连续概率分布,用于描述事件在给定时间内发生的概率。它适用于事件之间互相独立,并且平均发生速率始终不变的情况
伽玛分布的概率密度函数为:
在此其中,f(x)代表在特定时间x内事件发生的概率密度。α和β是伽玛分布的形状参数和速率参数。α用于决定伽玛分布的形状,取值范围为0到正无穷。β表示事件的平均发生速率,即在单位时间内事件发生的平均次数,取值范围为0到正无穷。e为自然常数,约等于2.718
伽玛分布在实际中的应用:例如放射性衰变:在放射性衰变中,放射性原子核衰变的时间可以看作是伽玛分布,平均衰变时间即为β/α。
7. 贝塔分布
贝塔分布(Beta distribution)是一种连续型概率分布,用于描述一组数值中成功次数的概率分布。它具有两个参数,分别表示成功概率的期望值(mean)和标准差(standard deviation)。
贝塔分布的概率密度函数如下:
在这其中,x代表成功的次数,α和β分别代表分布的形状参数
贝塔分布在许多实际问题中都有应用。例如,在基因编辑中,研究人员可能会使用贝塔分布来预测基因编辑技术成功编辑某个目标位点的概率。在金融领域,贝塔分布可以用于描述资产价格的波动性,或者用于计算投资组合的预期收益
8. 均匀分布
均匀分布是一种概率分布,用于描述一组数值在某个区间内均匀地分布。均匀分布有两种类型:离散均匀分布和连续均匀分布。
离散均匀分布:当一个离散随机变量X满足以下概率分布时:P(X=k) = k/(n+1),其中k为非负整数,n为区间内的整数,我们称X服从离散均匀分布。连续均匀分布:当一个连续随机变量X的概率密度函数为f(x) = 1/(b-a)时,我们称X服从连续均匀分布,其中a和b为区间的两个端点
均匀分布的特点是,在给定的区间内,每个数值都有相同的机会出现。例如,抛一枚公正的硬币,正面和反面出现的概率都是1/2,这就是一种均匀分布。
9. 对数正态分布
对数正态分布(Log-normal distribution)是一种连续型概率分布,它的特点是随机变量的对数服从正态分布。换句话说,如果一个随机变量X的对数ln(X)服从正态分布,那么这个随机变量X就服从对数正态分布。
对数正态分布的概率密度函数可以表示为:
其中,μ是对数正态分布的均值,σ是对数正态分布的标准差。
对数正态分布在许多实际应用中都有重要意义,例如金融领域(股票价格、收益率等)、生物学(生长速率等)、经济学(消费支出等)等。
10. T分布
T分布,是一种连续型概率分布,主要用于小样本情况下描述均值的分布。t分布与正态分布(Normal distribution)类似,但它的尾部可以向左右延伸,取决于自由度(k)的大小。t分布广泛应用于统计推断,例如在假设检验中用于评估样本均值与总体均值之间的显著性差异。
t分布的期望和方差如下:
E(t)=0
要重写的内容是:Var(t)=k/(k-1)
t分布的自由度(k)表示样本大小(n)和总体标准差之间的关系。当k > 30时,t分布接近正态分布;当k接近1时,t分布变为柯西分布(Cauchy分布)
在实际应用中,当样本量较大(n>30)时,可以使用正态分布进行假设检验,这时可以利用z统计量建立置信区间。然而,当样本量较小(n
11. Weibull分布
Weibull分布(Weibull distribution)是一种连续型概率分布。
Weibull分布的概率密度函数为:
在韦伯分布中,x被视为随机变量,λ则被称为比例参数(scale),k则是形状参数(shape)。就韦伯分布而言,当k等于1时,它就是指数分布。如果λ等于1的话,这就是最小化的韦伯分布
以上是11个基本分布,数据科学家95%的时间都在使用的详细内容。更多信息请关注PHP中文网其他相关文章!

软AI(被定义为AI系统,旨在使用近似推理,模式识别和灵活的决策执行特定的狭窄任务 - 试图通过拥抱歧义来模仿类似人类的思维。 但是这对业务意味着什么

答案很明确 - 只是云计算需要向云本地安全工具转变,AI需要专门为AI独特需求而设计的新型安全解决方案。 云计算和安全课程的兴起 在

企业家,并使用AI和Generative AI来改善其业务。同时,重要的是要记住生成的AI,就像所有技术一样,都是一个放大器 - 使得伟大和平庸,更糟。严格的2024研究O

解锁嵌入模型的力量:深入研究安德鲁·NG的新课程 想象一个未来,机器可以完全准确地理解和回答您的问题。 这不是科幻小说;多亏了AI的进步,它已成为R

大型语言模型(LLM)和不可避免的幻觉问题 您可能使用了诸如Chatgpt,Claude和Gemini之类的AI模型。 这些都是大型语言模型(LLM)的示例,在大规模文本数据集上训练的功能强大的AI系统

最近的研究表明,根据行业和搜索类型,AI概述可能导致有机交通下降15-64%。这种根本性的变化导致营销人员重新考虑其在数字可见性方面的整个策略。 新的

埃隆大学(Elon University)想象的数字未来中心的最新报告对近300名全球技术专家进行了调查。由此产生的报告“ 2035年成为人类”,得出的结论是,大多数人担心AI系统加深的采用


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Atom编辑器mac版下载
最流行的的开源编辑器

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

WebStorm Mac版
好用的JavaScript开发工具