随着大型语言模型(LLM)的发展,从业者面临更多挑战。如何避免 LLM 产生有害回复?如何快速删除训练数据中的版权保护内容?如何减少 LLM 幻觉(hallucinations,即错误事实)? 如何在数据政策更改后快速迭代 LLM?这些问题在人工智能法律和道德的合规要求日益成熟的大趋势下,对于 LLM 的安全可信部署至关重要。
目前业界的主流解决方案是通过使用强化学习的方式对齐LLM(对齐)来微调对比数据(正样本和负样本),以确保LLM的输出符合人类的预期和价值观。然而,这个对齐过程通常会受到数据收集和计算资源的限制
字节跳动提出了一种让LLM进行遗忘学习的方法来进行对齐。本文研究了如何在LLM上进行"遗忘"操作,即忘记有害行为或遗忘学习(Machine Unlearning)。作者展示了遗忘学习在三种LLM对齐场景上取得的明显效果:(1)删除有害输出;(2)移除侵权保护内容;(3)消除大语言LLM幻觉
遗忘学习有三个优势:(1) 只需负样本(有害样本),负样本比 RLHF 所需的正样本(高质量的人工手写输出)的收集简单的多(比如红队测试或用户报告);(2) 计算成本低;(3) 如果知道哪些训练样本导致 LLM 有害行为时,遗忘学习尤为有效。
作者的论点是,对于资源有限的从业者来说,他们应该优先考虑停止产生有害输出,而不是试图追求过于理想化的输出,并且忘记学习是一种方便的方法。尽管只有负样本,研究表明,在只使用2%的计算时间下,忘记学习仍然可以获得比强化学习和高温高频算法更好的对齐性能
- 论文地址:https://arxiv.org/abs/2310.10683
- 代码地址:https://github.com/kevinyaobytedance/llm_unlearn
使用场景
在资源有限的情况下,我们可以采用这种方法来最大程度地发挥优势。当我们没有预算请人员编写高质量样本或者计算资源不足时,我们应该优先停止 LLM 产生有害输出,而不是试图让它产生有益输出
有害的输出所造成的损害是无法被有益的输出所弥补的。如果一个用户向LLM提出100个问题,他得到的答案是有害的,那么他将失去信任,无论LLM之后提供了多少有益的答案。有害问题的预期输出可能是空格、特殊字符、无意义的字符串等,总之,必须是无害的文本
展示了LLM遗忘学习的三个成功案例:(1) 停止生成有害回复(请将内容改写为中文,不需要出现原始句子);这与RLHF情境相似,区别是本方法的目标是生成无害回复,而不是有益回复。当只有负样本时,这是能期望的最好结果。(2) 在使用侵权数据训练后,LLM成功删除了数据,并考虑到成本因素不能重新训练LLM;(3) LLM成功忘记了"幻觉"
请将内容改写为中文,不需要出现原始句子
方法
在微调步骤t中,LLM的更新如下:
第一项损失为梯度上升(graident descent),目的为忘记有害样本:
为有害提示 (prompt),
为对应的有害回复。整体损失反向提升了有害样本的损失,即让 LLM “遗忘” 有害样本。
第二项损失是针对随机误配的,它要求LLM在有害提示的情况下预测出无关回复。这类似于分类中的标签平滑(label smoothing [2])。其目的是让LLM更好地遗忘有害提示上的有害输出。同时,实验证明这种方法可以提高LLM在正常情况下的输出性能
第三项损失为在正常任务上维持性能:
同 RLHF 类似,在预训练 LLM 上计算 KL 散度能更好保持 LLM 性能。
此外,所有的梯度上升和下降都只在输出(y)部分做,而不是像 RLHF 在提示 - 输出对(x, y)上。
应用场景:忘却有害内容等
本文用 PKU-SafeRLHF 数据作为遗忘数据,TruthfulQA 作为正常数据,图二的内容需要进行改写显示了遗忘学习后 LLM 在忘却的有害提示上输出的有害率。文中使用的方法为 GA(梯度上升和 GA+Mismatch:梯度上升 + 随机误配)。遗忘学习后的有害率接近于零。
图二的内容需要进行改写
第三张图显示了有害提示(不被遗忘)的输出结果,这是之前未曾见过的。即使是在没有被遗忘的有害提示上,LLM 的有害率也接近于零,这证明LLM遗忘的不仅仅是具体的样本,而是泛化到了包含有害概念的内容
图三
LLM 在正常样本上的性能和忘却前保持类似,同时具有以下特点
表一展示了生成的样本。可以看到在有害提示下,LLM 生成的样本都是无意义字符串,即无害输出。
表一
在其他场景中,比如忘却侵权内容和忘却幻觉,该方法的应用原文进行了详细的描述
RLHF 比较
需要改写的内容是:第二张表格展示了该方法和RLHF的比较,其中RLHF使用了正例,而遗忘学习方法只使用了负例,因此一开始该方法处于劣势。但即便如此,遗忘学习仍能达到与RLHF相似的对齐性能
需要改写的内容是:第二张表格
需要重写的内容:第四张图片显示了计算时间的比较,本方法只需 RLHF 2% 的计算时间。
需要重写的内容:第四张图片
即使只有负样本,使用遗忘学习的方法也可以获得与 RLHF 相当的无害率,并且只需使用 2% 的计算能力。因此,如果目标是停止输出有害内容,相比于 RLHF,遗忘学习的效率更高
结论
这项研究首次探索了LLM上的遗忘学习。研究结果显示,遗忘学习是一种有希望的对齐方法,尤其是在从业者资源不足的情况下。论文展示了三种情况:遗忘学习可以成功删除有害回复、删除侵权内容和消除错觉。研究表明,即使只有负样本,遗忘学习仍然可以在仅使用RLHF计算时间的2%情况下,获得与RLHF相似的对齐效果
以上是RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术的详细内容。更多信息请关注PHP中文网其他相关文章!

动荡游戏:与AI代理商的游戏开发彻底改变 Roupheaval是一家游戏开发工作室,由暴风雪和黑曜石等行业巨头的退伍军人组成,有望用其创新的AI驱动的Platfor革新游戏创作

Uber的Robotaxi策略:自动驾驶汽车的骑车生态系统 在最近的Curbivore会议上,Uber的Richard Willder推出了他们成为Robotaxi提供商的乘车平台的策略。 利用他们在

事实证明,视频游戏是尖端AI研究的宝贵测试场所,尤其是在自主代理和现实世界机器人的开发中,甚至有可能促进人工通用智能(AGI)的追求。 一个

不断发展的风险投资格局的影响在媒体,财务报告和日常对话中显而易见。 但是,对投资者,初创企业和资金的具体后果经常被忽略。 风险资本3.0:范式

Adobe Max London 2025对Creative Cloud和Firefly进行了重大更新,反映了向可访问性和生成AI的战略转变。 该分析结合了事件前简报中的见解,并融合了Adobe Leadership。 (注意:Adob

Meta的Llamacon公告展示了一项综合的AI策略,旨在直接与OpenAI等封闭的AI系统竞争,同时为其开源模型创建了新的收入流。 这个多方面的方法目标bo

人工智能领域对这一论断存在严重分歧。一些人坚称,是时候揭露“皇帝的新衣”了,而另一些人则强烈反对人工智能仅仅是普通技术的观点。 让我们来探讨一下。 对这一创新性人工智能突破的分析,是我持续撰写的福布斯专栏文章的一部分,该专栏涵盖人工智能领域的最新进展,包括识别和解释各种有影响力的人工智能复杂性(请点击此处查看链接)。 人工智能作为普通技术 首先,需要一些基本知识来为这场重要的讨论奠定基础。 目前有大量的研究致力于进一步发展人工智能。总目标是实现人工通用智能(AGI)甚至可能实现人工超级智能(AS

公司AI模型的有效性现在是一个关键的性能指标。自AI BOOM以来,从编写生日邀请到编写软件代码的所有事物都将生成AI使用。 这导致了语言mod的扩散


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器