搜索
首页科技周边人工智能RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

随着大型语言模型(LLM)的发展,从业者面临更多挑战。如何避免 LLM 产生有害回复?如何快速删除训练数据中的版权保护内容?如何减少 LLM 幻觉(hallucinations,即错误事实)? 如何在数据政策更改后快速迭代 LLM?这些问题在人工智能法律和道德的合规要求日益成熟的大趋势下,对于 LLM 的安全可信部署至关重要。

目前业界的主流解决方案是通过使用强化学习的方式对齐LLM(对齐)来微调对比数据(正样本和负样本),以确保LLM的输出符合人类的预期和价值观。然而,这个对齐过程通常会受到数据收集和计算资源的限制

字节跳动提出了一种让LLM进行遗忘学习的方法来进行对齐。本文研究了如何在LLM上进行"遗忘"操作,即忘记有害行为或遗忘学习(Machine Unlearning)。作者展示了遗忘学习在三种LLM对齐场景上取得的明显效果:(1)删除有害输出;(2)移除侵权保护内容;(3)消除大语言LLM幻觉

遗忘学习有三个优势:(1) 只需负样本(有害样本),负样本比 RLHF 所需的正样本(高质量的人工手写输出)的收集简单的多(比如红队测试或用户报告);(2) 计算成本低;(3) 如果知道哪些训练样本导致 LLM 有害行为时,遗忘学习尤为有效。

作者的论点是,对于资源有限的从业者来说,他们应该优先考虑停止产生有害输出,而不是试图追求过于理想化的输出,并且忘记学习是一种方便的方法。尽管只有负样本,研究表明,在只使用2%的计算时间下,忘记学习仍然可以获得比强化学习和高温高频算法更好的对齐性能

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

  • 论文地址:https://arxiv.org/abs/2310.10683
  • 代码地址:https://github.com/kevinyaobytedance/llm_unlearn

使用场景

在资源有限的情况下,我们可以采用这种方法来最大程度地发挥优势。当我们没有预算请人员编写高质量样本或者计算资源不足时,我们应该优先停止 LLM 产生有害输出,而不是试图让它产生有益输出

有害的输出所造成的损害是无法被有益的输出所弥补的。如果一个用户向LLM提出100个问题,他得到的答案是有害的,那么他将失去信任,无论LLM之后提供了多少有益的答案。有害问题的预期输出可能是空格、特殊字符、无意义的字符串等,总之,必须是无害的文本

展示了LLM遗忘学习的三个成功案例:(1) 停止生成有害回复(请将内容改写为中文,不需要出现原始句子);这与RLHF情境相似,区别是本方法的目标是生成无害回复,而不是有益回复。当只有负样本时,这是能期望的最好结果。(2) 在使用侵权数据训练后,LLM成功删除了数据,并考虑到成本因素不能重新训练LLM;(3) LLM成功忘记了"幻觉"

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

请将内容改写为中文,不需要出现原始句子

方法

在微调步骤t中,LLM的更新如下:

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

第一项损失为梯度上升(graident descent),目的为忘记有害样本:

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术为有害提示 (prompt),RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术为对应的有害回复。整体损失反向提升了有害样本的损失,即让 LLM “遗忘” 有害样本。

第二项损失是针对随机误配的,它要求LLM在有害提示的情况下预测出无关回复。这类似于分类中的标签平滑(label smoothing [2])。其目的是让LLM更好地遗忘有害提示上的有害输出。同时,实验证明这种方法可以提高LLM在正常情况下的输出性能

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

第三项损失为在正常任务上维持性能:

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

同 RLHF 类似,在预训练 LLM 上计算 KL 散度能更好保持 LLM 性能。

此外,所有的梯度上升和下降都只在输出(y)部分做,而不是像 RLHF 在提示 - 输出对(x, y)上。

应用场景:忘却有害内容等

本文用 PKU-SafeRLHF 数据作为遗忘数据,TruthfulQA 作为正常数据,图二的内容需要进行改写显示了遗忘学习后 LLM 在忘却的有害提示上输出的有害率。文中使用的方法为 GA(梯度上升和 GA+Mismatch:梯度上升 + 随机误配)。遗忘学习后的有害率接近于零。

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

图二的内容需要进行改写

第三张图显示了有害提示(不被遗忘)的输出结果,这是之前未曾见过的。即使是在没有被遗忘的有害提示上,LLM 的有害率也接近于零,这证明LLM遗忘的不仅仅是具体的样本,而是泛化到了包含有害概念的内容

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

图三

LLM 在正常样本上的性能和忘却前保持类似,同时具有以下特点

表一展示了生成的样本。可以看到在有害提示下,LLM 生成的样本都是无意义字符串,即无害输出。

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

表一

在其他场景中,比如忘却侵权内容和忘却幻觉,该方法的应用原文进行了详细的描述

RLHF 比较

需要改写的内容是:第二张表格展示了该方法和RLHF的比较,其中RLHF使用了正例,而遗忘学习方法只使用了负例,因此一开始该方法处于劣势。但即便如此,遗忘学习仍能达到与RLHF相似的对齐性能

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

需要改写的内容是:第二张表格

需要重写的内容:第四张图片显示了计算时间的比较,本方法只需 RLHF 2% 的计算时间。

RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术

需要重写的内容:第四张图片

即使只有负样本,使用遗忘学习的方法也可以获得与 RLHF 相当的无害率,并且只需使用 2% 的计算能力。因此,如果目标是停止输出有害内容,相比于 RLHF,遗忘学习的效率更高

结论

这项研究首次探索了LLM上的遗忘学习。研究结果显示,遗忘学习是一种有希望的对齐方法,尤其是在从业者资源不足的情况下。论文展示了三种情况:遗忘学习可以成功删除有害回复、删除侵权内容和消除错觉。研究表明,即使只有负样本,遗忘学习仍然可以在仅使用RLHF计算时间的2%情况下,获得与RLHF相似的对齐效果

以上是RLHF 2%的算力应用于消除LLM有害输出,字节发布遗忘学习技术的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
AI游戏开发通过Upheaval的Dreamer Portal进入其代理时代AI游戏开发通过Upheaval的Dreamer Portal进入其代理时代May 02, 2025 am 11:17 AM

动荡游戏:与AI代理商的游戏开发彻底改变 Roupheaval是一家游戏开发工作室,由暴风雪和黑曜石等行业巨头的退伍军人组成,有望用其创新的AI驱动的Platfor革新游戏创作

Uber想成为您的Robotaxi商店,提供商会让他们吗?Uber想成为您的Robotaxi商店,提供商会让他们吗?May 02, 2025 am 11:16 AM

Uber的Robotaxi策略:自动驾驶汽车的骑车生态系统 在最近的Curbivore会议上,Uber的Richard Willder推出了他们成为Robotaxi提供商的乘车平台的策略。 利用他们在

AI代理玩电子游戏将改变未来的机器人AI代理玩电子游戏将改变未来的机器人May 02, 2025 am 11:15 AM

事实证明,视频游戏是尖端AI研究的宝贵测试场所,尤其是在自主代理和现实世界机器人的开发中,甚至有可能促进人工通用智能(AGI)的追求。 一个

创业公司工业综合体VC 3.0和James Currier的宣言创业公司工业综合体VC 3.0和James Currier的宣言May 02, 2025 am 11:14 AM

不断发展的风险投资格局的影响在媒体,财务报告和日常对话中显而易见。 但是,对投资者,初创企业和资金的具体后果经常被忽略。 风险资本3.0:范式

Adobe在Adobe Max London 2025更新创意云和萤火虫Adobe在Adobe Max London 2025更新创意云和萤火虫May 02, 2025 am 11:13 AM

Adobe Max London 2025对Creative Cloud和Firefly进行了重大更新,反映了向可访问性和生成AI的战略转变。 该分析结合了事件前简报中的见解,并融合了Adobe Leadership。 (注意:Adob

Llamacon宣布的所有元数据Llamacon宣布的所有元数据May 02, 2025 am 11:12 AM

Meta的Llamacon公告展示了一项综合的AI策略,旨在直接与OpenAI等封闭的AI系统竞争,同时为其开源模型创建了新的收入流。 这个多方面的方法目标bo

关于AI仅仅是普通技术的主张的酿造争议关于AI仅仅是普通技术的主张的酿造争议May 02, 2025 am 11:10 AM

人工智能领域对这一论断存在严重分歧。一些人坚称,是时候揭露“皇帝的新衣”了,而另一些人则强烈反对人工智能仅仅是普通技术的观点。 让我们来探讨一下。 对这一创新性人工智能突破的分析,是我持续撰写的福布斯专栏文章的一部分,该专栏涵盖人工智能领域的最新进展,包括识别和解释各种有影响力的人工智能复杂性(请点击此处查看链接)。 人工智能作为普通技术 首先,需要一些基本知识来为这场重要的讨论奠定基础。 目前有大量的研究致力于进一步发展人工智能。总目标是实现人工通用智能(AGI)甚至可能实现人工超级智能(AS

模型公民,为什么AI值是下一个业务码模型公民,为什么AI值是下一个业务码May 02, 2025 am 11:09 AM

公司AI模型的有效性现在是一个关键的性能指标。自AI BOOM以来,从编写生日邀请到编写软件代码的所有事物都将生成AI使用。 这导致了语言mod的扩散

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

安全考试浏览器

安全考试浏览器

Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

螳螂BT

螳螂BT

Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器