首页 >科技周边 >人工智能 >机器学习 | PyTorch简明教程上篇

机器学习 | PyTorch简明教程上篇

PHPz
PHPz转载
2023-11-02 17:25:12688浏览

前面几篇文章介绍了特征归一化和张量,接下来开始写两篇PyTorch简明教程,主要介绍PyTorch简单实践。

1、四则运算

import torcha = torch.tensor([2, 3, 4])b = torch.tensor([3, 4, 5])print("a + b: ", (a + b).numpy())print("a - b: ", (a - b).numpy())print("a * b: ", (a * b).numpy())print("a / b: ", (a / b).numpy())

加减乘除就不用多解释了,输出为:

a + b:[5 7 9]a - b:[-1 -1 -1]a * b:[ 6 12 20]a / b:[0.6666667 0.750.8]

2、线性回归

线性回归是找到一条直线尽可能接近已知点,如图:

机器学习 | PyTorch简明教程上篇图1

import torchfrom torch import optimdef build_model1():return torch.nn.Sequential(torch.nn.Linear(1, 1, bias=False))def build_model2():model = torch.nn.Sequential()model.add_module("linear", torch.nn.Linear(1, 1, bias=False))return modeldef train(model, loss, optimizer, x, y):model.train()optimizer.zero_grad()fx = model.forward(x.view(len(x), 1)).squeeze()output = loss.forward(fx, y)output.backward()optimizer.step()return output.item()def main():torch.manual_seed(42)X = torch.linspace(-1, 1, 101, requires_grad=False)Y = 2 * X + torch.randn(X.size()) * 0.33print("X: ", X.numpy(), ", Y: ", Y.numpy())model = build_model1()loss = torch.nn.MSELoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 10for i in range(100):cost = 0.num_batches = len(X) // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer, X[start:end], Y[start:end])print("Epoch = %d, cost = %s" % (i + 1, cost / num_batches))w = next(model.parameters()).dataprint("w = %.2f" % w.numpy())if __name__ == "__main__":main()

(1)先从main函数开始,torch.manual_seed(42)用于设置随机数生成器的种子,以确保在每次运行时生成的随机数序列相同,该函数接受一个整数参数作为种子,可以在训练神经网络等需要随机数的场景中使用,以确保结果的可重复性;

(2)torch.linspace(-1, 1, 101, requires_grad=False)用于在指定的区间内生成一组等间隔的数值,该函数接受三个参数:起始值、终止值和元素个数,返回一个张量,其中包含了指定个数的等间隔数值;

(3)build_model1的内部实现:

  • torch.nn.Sequential(torch.nn.Linear(1, 1, bias=False))中使用nn.Sequential类的构造函数,将线性层作为参数传递给它,然后返回一个包含该线性层的神经网络模型;
  • build_model2和build_model1功能一样,使用add_module()方法向其中添加了一个名为linear的子模块;

(4)torch.nn.MSELoss(reductinotallow='mean')定义损失函数;

使用optim.SGD(model.parameters(), lr=0.01, momentum=0.9)可以实现随机梯度下降(Stochastic Gradient Descent,SGD)优化算法

将训练集通过批量大小拆分,循环100次

(7)接下来是训练函数train,用于训练一个神经网络模型,具体来说,该函数接受以下参数:

  • model:神经网络模型,通常是一个继承自nn.Module的类的实例;
  • loss:损失函数,用于计算模型的预测值与真实值之间的差异;
  • optimizer:优化器,用于更新模型的参数;
  • x:输入数据,是一个torch.Tensor类型的张量;
  • y:目标数据,是一个torch.Tensor类型的张量;

(8)train是PyTorch训练过程中常用的方法,其步骤如下:

  • 将模型设置为训练模式,即启用dropout和batch normalization等训练时使用的特殊操作;
  • 将优化器的梯度缓存清零,以便进行新一轮的梯度计算;
  • 将输入数据传递给模型,计算模型的预测值,并将预测值与目标数据传递给损失函数,计算损失值;
  • 对损失值进行反向传播,计算模型参数的梯度;
  • 使用优化器更新模型参数,以最小化损失值;
  • 返回损失值的标量值;

(9)print("轮次 = %d, 损失值 = %s" % (i + 1, cost / num_batches)) 最后打印当前训练的轮次和损失值,上述的代码输出如下:

...Epoch = 95, cost = 0.10514946877956391Epoch = 96, cost = 0.10514946877956391Epoch = 97, cost = 0.10514946877956391Epoch = 98, cost = 0.10514946877956391Epoch = 99, cost = 0.10514946877956391Epoch = 100, cost = 0.10514946877956391w = 1.98

3、逻辑回归

逻辑回归即用一根曲线近似表示一堆离散点的轨迹,如图:

机器学习 | PyTorch简明教程上篇图2

import numpy as npimport torchfrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False))def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()

(1)先从main函数开始,torch.manual_seed(42)上面有介绍,在此略过;

(2)load_mnist是自己实现下载mnist数据集,返回trX和teX是输入数据,trY和teY是标签数据;

(3)build_model内部实现:torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False)) 用于构建一个包含一个线性层的神经网络模型,模型的输入特征数量为input_dim,输出特征数量为output_dim,且该线性层没有偏置项,其中n_classes=10表示输出10个分类; 重写后: (3)build_model内部实现:使用torch.nn.Sequential(torch.nn.Linear(input_dim, output_dim, bias=False)) 来构建一个包含一个线性层的神经网络模型,该模型的输入特征数量为input_dim,输出特征数量为output_dim,且该线性层没有偏置项。其中n_classes=10表示输出10个分类;

(4)其他的步骤就是定义损失函数,梯度下降优化器,通过batch_size将训练集拆分,循环100次进行train;

使用optim.SGD(model.parameters(), lr=0.01, momentum=0.9)可以实现随机梯度下降(Stochastic Gradient Descent,SGD)优化算法

(6)在每一轮训练结束后,需要执行predict函数来进行预测。该函数接受两个参数model(已经训练好的模型)和teX(需要进行预测的数据)。具体步骤如下:

  • model.eval()模型设置为评估模式,这意味着模型将不会进行训练,而是仅用于推理;
  • 将output转换为NumPy数组,并使用argmax()方法获取每个样本的预测类别;

(7)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输出如下(执行很快,但是准确率偏低):

...Epoch 91, cost = 0.252863, acc = 92.52%Epoch 92, cost = 0.252717, acc = 92.51%Epoch 93, cost = 0.252573, acc = 92.50%Epoch 94, cost = 0.252431, acc = 92.50%Epoch 95, cost = 0.252291, acc = 92.52%Epoch 96, cost = 0.252153, acc = 92.52%Epoch 97, cost = 0.252016, acc = 92.51%Epoch 98, cost = 0.251882, acc = 92.51%Epoch 99, cost = 0.251749, acc = 92.51%Epoch 100, cost = 0.251617, acc = 92.51%

4、神经网络

一个经典的LeNet网络,用于对字符进行分类,如图:

机器学习 | PyTorch简明教程上篇图3

  • 定义一个多层的神经网络
  • 对数据集的预处理并准备作为网络的输入
  • 将数据输入到网络
  • 计算网络的损失
  • 反向传播,计算梯度
import numpy as npimport torchfrom torch import optimfrom data_util import load_mnistdef build_model(input_dim, output_dim):return torch.nn.Sequential(torch.nn.Linear(input_dim, 512, bias=False),torch.nn.Sigmoid(),torch.nn.Linear(512, output_dim, bias=False))def train(model, loss, optimizer, x_val, y_val):model.train()optimizer.zero_grad()fx = model.forward(x_val)output = loss.forward(fx, y_val)output.backward()optimizer.step()return output.item()def predict(model, x_val):model.eval()output = model.forward(x_val)return output.data.numpy().argmax(axis=1)def main():torch.manual_seed(42)trX, teX, trY, teY = load_mnist(notallow=False)trX = torch.from_numpy(trX).float()teX = torch.from_numpy(teX).float()trY = torch.tensor(trY)n_examples, n_features = trX.size()n_classes = 10model = build_model(n_features, n_classes)loss = torch.nn.CrossEntropyLoss(reductinotallow='mean')optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)batch_size = 100for i in range(100):cost = 0.num_batches = n_examples // batch_sizefor k in range(num_batches):start, end = k * batch_size, (k + 1) * batch_sizecost += train(model, loss, optimizer,trX[start:end], trY[start:end])predY = predict(model, teX)print("Epoch %d, cost = %f, acc = %.2f%%"% (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))if __name__ == "__main__":main()

(1)以上这段神经网络的代码与逻辑回归没有太多的差异,区别的地方是build_model,这里是构建一个包含两个线性层和一个Sigmoid激活函数的神经网络模型,该模型包含一个输入特征数量为input_dim,输出特征数量为output_dim的线性层,一个Sigmoid激活函数,以及一个输入特征数量为512,输出特征数量为output_dim的线性层;

(2)print("Epoch %d, cost = %f, acc = %.2f%%" % (i + 1, cost / num_batches, 100. * np.mean(predY == teY)))最后打印当前训练的轮次,损失值和acc,上述的代码输入如下(执行时间比逻辑回归要长,但是准确率要高很多):

第91个时期,费用= 0.054484,准确率= 97.58%第92个时期,费用= 0.053753,准确率= 97.56%第93个时期,费用= 0.053036,准确率= 97.60%第94个时期,费用= 0.052332,准确率= 97.61%第95个时期,费用= 0.051641,准确率= 97.63%第96个时期,费用= 0.050964,准确率= 97.66%第97个时期,费用= 0.050298,准确率= 97.66%第98个时期,费用= 0.049645,准确率= 97.67%第99个时期,费用= 0.049003,准确率= 97.67%第100个时期,费用= 0.048373,准确率= 97.68%


以上是机器学习 | PyTorch简明教程上篇的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:51cto.com。如有侵权,请联系admin@php.cn删除