搜索
首页科技周边人工智能有哪些深度学习效果不如传统方法的经典案例?

作为目前最前沿的科技领域之一,深度学习通常被认为是推动科技进步的关键。然而,是否存在一些深度学习的效果不如传统方法的案例呢?本文汇总了一些来自知乎的高质量回答,以解答这个问题

有哪些深度学习效果不如传统方法的经典案例?

问题链接:https://www.zhihu.com/question/451498156

# 回答一

作者:桔了个仔

来源链接:https://www.zhihu.com/question/451498156/answer/1802577845

对于解释性有要求的领域,基本深度学习是没法和传统方法比的。我这几年都在做风控/反洗钱的产品,但监管要求我们的决策要可解释性,而我们曾经尝试深度学习,解释性很难搞,而且,效果也不咋地。对于风控场景,数据清洗是非常重要的事,否则只会是garbage in garge out。

在写上面内容时,我想起前两年看的一篇文章:《你不需要ML/AI,你需要SQL》

https://www.php.cn/link/f0e1f0412f36e086dc5f596b84370e86

作者是尼日利亚的软件工程师Celestine Omin,在尼日利亚最大的电商网站之一Konga工作。我们都知道,对老用户精准营销和个性化推荐,都是AI最为常用的领域之一。当别人在用深度学习搞推荐时,他的方法显得异常简单。他只是跑了一遍数据库,筛选出所有3个月没有登录过的用户,给他们推优惠券。还跑了一遍用户购物车的商品清单,根据这些热门商品,决定推荐什么相关联的商品。

结果,他这种简单的而基于SQL的个性化推荐,大多数营销邮件的打开率在7-10%之间,做得好时打开率接近25-30%,是行业平均打开率的三倍。

当然,这个例子并不是告诉大家,推荐算法没用,大家都应该用SQL,而是说,深度学习应用时,需要考虑成本,应用场景等制约因素。我在之前的回答里(算法工程师的落地能力具体指的是什么?),说到过算法落地时需要考虑实际制约因素。

https://www.php.cn/link/f0e1f0412f36e086dc5f596b84370e86

而尼日利亚的电商环境,依然出于非常落后的状态,物流也跟不上。即使使用深度学习方法,提升了效果,实际对公司整体利润并不会有太大影响。

所以,算法落地时必须「因地制宜」否则,又会出现「电风扇吹香皂盒」的情况。

某大企业引进了一条香皂包装生产线,结果发现这条生产线有个缺陷:常常会有盒子里没装入香皂。总不能把空盒子卖给顾客啊,他们只得请了一个学自动化的博士后设计一个方案来分拣空的香皂盒。
博士后拉起了一个十几人的科研攻关小组,综合采用了机械、微电子、自动化、X射线探测等技术,花了90万,成功解决了问题。每当生产线上有空香皂盒通过,两旁的探测器会检测到,并且驱动一只机械手把空皂盒推走。
中国南方有个乡镇企业也买了同样的生产线,老板发现这个问题后大为发火,找了个小工来说“你他妈给老子把这个搞定,不然你给老子爬走。”小工很快想出了办法他花了190块钱在生产线旁边放了一台大功率电风扇猛吹,于是空皂盒都被吹走了。

(虽然只是个段子)

深度学习是锤子,而世间万物不都是钉子。

# 回答二

作者:莫笑傅立叶

来源链接:https://www.zhihu.com/question/451498156/answer/1802730183

有两个比较常见的场景:

1.追求可解释性的场景。

深度学习非常善于解决分类和回归问题,但对于什么影响了结果的解释很弱,如果实际业务场景中,对于解释性要求很高,诸如以下场景,那么深度学习往往被干翻。

有哪些深度学习效果不如传统方法的经典案例?

2. 许多运筹优化场景

诸如调度,规划,分配问题,往往这类问题无法很好的转化为监督学习格式,因此常采用优化算法。在现在研究中,在求解过程中往往融合深度学习算法更好地求解,但总体而言,模型本身还不是深度学习为主干。

深度学习是一个非常好的求解思路,但不是唯一,甚至在落地时依旧问题很大。若将深度学习融合于优化算法,作为求解的一个部件,依旧有很大的用武之地。

总之,

有哪些深度学习效果不如传统方法的经典案例?

# 回答三

作者:LinT

来源链接:https://www.zhihu.com/question/451498156/answer/1802516688

这个问题要分场景看。深度学习固然免去了特征工程的麻烦,但是在一些场景下应该很难应用:

  1. 应用对时延有高要求,而对精度没有那么高的要求,这时简单的模型可能是更好的选择;
  2. 一些数据类型,例如tabular数据,可能更适合使用基于树的模型等统计学习模型而不是深度学习模型;
  3. 模型决策有重大影响,例如安全相关、经济决策相关,要求模型具有可解释性,那么线性模型或者基于树的模型,相对深度学习是更好的选择;
  4. 应用场景决定了数据采集难,使用深度学习有过拟合的风险

真实的应用都是从需求出发的,抛开需求(精度、时延、算力消耗)谈表现是不科学的。如果把问题中的『干翻』限定到某个指标上,可能讨论范围可以缩小一些。

有哪些深度学习效果不如传统方法的经典案例?

原文链接:https://mp.weixin.qq.com/s/tO2OD772qCntNytwqPjUsA

以上是有哪些深度学习效果不如传统方法的经典案例?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
在LLMS中调用工具在LLMS中调用工具Apr 14, 2025 am 11:28 AM

大型语言模型(LLMS)的流行激增,工具称呼功能极大地扩展了其功能,而不是简单的文本生成。 现在,LLM可以处理复杂的自动化任务,例如Dynamic UI创建和自主a

多动症游戏,健康工具和AI聊天机器人如何改变全球健康多动症游戏,健康工具和AI聊天机器人如何改变全球健康Apr 14, 2025 am 11:27 AM

视频游戏可以缓解焦虑,建立焦点或支持多动症的孩子吗? 随着医疗保健在全球范围内挑战,尤其是在青年中的挑战,创新者正在转向一种不太可能的工具:视频游戏。现在是世界上最大的娱乐印度河之一

没有关于AI的投入:获胜者,失败者和机遇没有关于AI的投入:获胜者,失败者和机遇Apr 14, 2025 am 11:25 AM

“历史表明,尽管技术进步推动了经济增长,但它并不能自行确保公平的收入分配或促进包容性人类发展,”乌托德秘书长Rebeca Grynspan在序言中写道。

通过生成AI学习谈判技巧通过生成AI学习谈判技巧Apr 14, 2025 am 11:23 AM

易于使用,使用生成的AI作为您的谈判导师和陪练伙伴。 让我们来谈谈。 对创新AI突破的这种分析是我正在进行的《福布斯》列的最新覆盖范围的一部分,包括识别和解释

泰德(Ted)从Openai,Google,Meta透露出庭,与我自己自拍泰德(Ted)从Openai,Google,Meta透露出庭,与我自己自拍Apr 14, 2025 am 11:22 AM

在温哥华举行的TED2025会议昨天在4月11日举行了第36版。它有来自60多个国家 /地区的80个发言人,包括Sam Altman,Eric Sc​​hmidt和Palmer Luckey。泰德(Ted)的主题“人类重新构想”是量身定制的

约瑟夫·斯蒂格利兹(Joseph Stiglitz约瑟夫·斯蒂格利兹(Joseph StiglitzApr 14, 2025 am 11:21 AM

约瑟夫·斯蒂格利茨(Joseph Stiglitz)是2001年著名的经济学家,是诺贝尔经济奖的获得者。斯蒂格利茨认为,AI可能会使现有的不平等和合并权力恶化,并在几个主导公司的手中加剧,最终破坏了经济的经济。

什么是图形数据库?什么是图形数据库?Apr 14, 2025 am 11:19 AM

图数据库:通过关系彻底改变数据管理 随着数据的扩展及其特征在各个字段中的发展,图形数据库正在作为管理互连数据的变革解决方案的出现。与传统不同

LLM路由:策略,技术和Python实施LLM路由:策略,技术和Python实施Apr 14, 2025 am 11:14 AM

大型语言模型(LLM)路由:通过智​​能任务分配优化性能 LLM的快速发展的景观呈现出各种各样的模型,每个模型都具有独特的优势和劣势。 有些在创意内容gen上表现出色

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
4 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

VSCode Windows 64位 下载

VSCode Windows 64位 下载

微软推出的免费、功能强大的一款IDE编辑器

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中