有效的医疗数据分析需要考虑数据质量的主观性。数据质量的好坏将直接影响从数据中获取的信息的准确性、可靠性和有效性。如果数据质量较差,可能会导致错误的诊断、无效的治疗,并增加患者和提供者的风险。因此,对于希望通过数据分析来提高医疗保健结果和性能的医疗保健管理人员来说,识别和解决关键的数据质量问题至关重要
数据质量是关键
识别关键数据质量问题的第一步是确定数据质量对于特定上下文和目标意味着什么。可以根据准确性、完整性、一致性、相关性和完整性等维度来评估数据质量。根据数据分析的类型和目的,某些维度可能比其他维度更重要。
越来越多的医疗保健创新使医生能够系统地为患者提供更好的护理。当医生学习其他医生的经验时,我们,作为病人,意识到医疗保健是复杂的,并不总是有效的。个别医生从治疗病人的过程中学习,但这些信息很少被其他医生进一步用于改善医疗服务。
然而,如果医疗保健不采用常规护理进行学习,医生将会依靠哪些数据来做出重要决策呢?
医疗保健的主要方法是使用明确的方法。随机试验的时间跨度为数年,对结果进行分析,并逐渐应用于临床实践。虽然可以确定治疗的安全性和有效性,但是没有足够的信息来比较不同的治疗方案,并找出哪种治疗效果最好
简而言之,虽然此类试验中捕获的信息很好,但还不够。医疗保健领域没有足够的数据来进行定制治疗或快速学习。
医疗保健中的数据质量
医疗保健中的数据质量有助于确定医疗服务支付的成本。随着人工智能(AI)、数据分析、医疗物联网(IoMT)和数据可视化工具的日益普及,数据质量在医疗保健中的重要性不容低估。
在医疗保健行业,数据质量是指医疗机构收集的数据具备以下特征:
- 准确性:只有当信息的每个详细条目都正确且正确呈现时,数据才被认为是准确的。
- 完整性:完整性意味着提供商收集的所有信息均已记录并易于访问。
- 相关性:当收集的数据用于医疗环境以及医疗目的时,就满足相关性因素。
- 合法性:表明数据收集、处理、存储和使用过程符合所有法律要求和标准。
- 一致性:只有当数据不断更新并反映患者的健康状况和医疗干预措施时,才能认为数据是一致的。
- 可访问性:当医务人员能够完全访问他们所需的详细信息并可以用来承担其职责时,就满足了可访问性标准。
从各种解决方案积累的数据质量可能会影响个人和全球层面的决策过程。如果收集的数据缺乏上述任何属性或者数据质量较差,则意味着使用此类错误数据可能会给患者、医院和研究人员带来负面后果
医疗保健技术与创新
医疗保健作为一个行业正在开始向现实世界的护理学习。虽然基础设施一直就位,但最近数据——电子健康记录、人工智能等技术和计算能力的融合,创造了一个可以实现和预期学习型医疗系统的环境。
医疗保健可以将从日常护理中学到的知识转化为数据。这些知识可以进一步帮助我们更好地理解每个人的独特特征。它有助于认识到独特特征如何影响可用治疗方案的有效性,并为个人提供量身定制的护理
在医疗保健领域,IT解决方案的应用速度令人难以置信。这导致了许多不断变化的趋势的出现,并促使持续的进步和改进。然而,这些趋势可能会对数据质量管理产生影响
然而,从糟糕的数据中吸取错误的教训不仅是一个问题,而且是一个值得关注的严重问题。行业根据这些建议做出决策。这可能会对患者造成严重伤害,他们对证据有效性的信心可能会动摇。
这里的教训很明确:如果医疗保健部门要从常规护理中学习,他们必须通过确保足够高的数据质量来解释建议来保护患者。
协助收集和处理高质量的医疗数据的新的IT解决方案,在医疗数据管理方面取得了重大进步。将见解与职责结合起来,有助于保护患者。在这个过程中,他们可以定义足够供其使用的数据质量标准和现实世界的证据。这些标准可以鼓励包括医生、保险公司和监管机构在内的关键决策者,决定现实世界的证据是否足够可信,以影响医疗保健的标准程序
利用高质量数据进行操作,可以提高医疗保健提供者的预测能力,避免可能导致患者结果不佳的情况。同时,这也有助于改善医院的管理和人员管理。数据标准的质量将进一步有助于衡量准确性、完整性和可追溯性
总结
在当前的学习型医疗保健系统中,很少有治疗决策是基于现实世界的证据来指导的。每个治疗决策都受到以往实践的影响。如果不严格强调准确性、完整性和可追溯性,可能会存在重大风险。并非所有生成医疗保健证据的公司都采用高质量数据或衡量数据质量。依赖基于证据的低质量数据可能会带来灾难性的后果
但医疗保健的光明未来充满希望。
医疗机构正在采用现代技术来从最可靠的医疗数据中学习。但是,在这种情况下,数据质量必须至关重要。
对于医疗保健行业而言,转向学习型医疗系统变得比以往更加重要。电子健康数据、计算能力和人工智能的可用性将带来革新。然而,对于医疗保健行业的专业人士而言,学会区分高质量数据和低质量数据,并确保他们从中吸取正确的教训同样重要
以上是为什么医疗数据质量在人工智能时代至关重要的详细内容。更多信息请关注PHP中文网其他相关文章!

用Microsoft Power BI图来利用数据可视化的功能 在当今数据驱动的世界中,有效地将复杂信息传达给非技术观众至关重要。 数据可视化桥接此差距,转换原始数据i

专家系统:深入研究AI的决策能力 想象一下,从医疗诊断到财务计划,都可以访问任何事情的专家建议。 这就是人工智能专家系统的力量。 这些系统模仿Pro

首先,很明显,这种情况正在迅速发生。各种公司都在谈论AI目前撰写的代码的比例,并且这些代码的比例正在迅速地增加。已经有很多工作流离失所

从数字营销到社交媒体的所有创意领域,电影业都站在技术十字路口。随着人工智能开始重塑视觉讲故事的各个方面并改变娱乐的景观

ISRO的免费AI/ML在线课程:通向地理空间技术创新的门户 印度太空研究组织(ISRO)通过其印度遥感研究所(IIR)为学生和专业人士提供了绝佳的机会

本地搜索算法:综合指南 规划大规模活动需要有效的工作量分布。 当传统方法失败时,本地搜索算法提供了强大的解决方案。 本文探讨了爬山和模拟

该版本包括三种不同的型号,GPT-4.1,GPT-4.1 MINI和GPT-4.1 NANO,标志着向大语言模型景观内的特定任务优化迈进。这些模型并未立即替换诸如

Chip Giant Nvidia周一表示,它将开始制造AI超级计算机(可以处理大量数据并运行复杂算法的机器),完全是在美国首次在美国境内。这一消息是在特朗普总统SI之后发布的


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

SublimeText3 Linux新版
SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。