搜索
首页科技周边人工智能一文读懂自动驾驶的激光雷达与视觉融合感知

2022年是智能驾驶由L2向L3/L4跨越的窗口期,越来越多的汽车厂商开始布局更高级别的智能驾驶量产,汽车智能化时代已悄然而至。

随着激光雷达硬件的技术提升,车规级量产和成本下行,高级别智能驾驶功能促进了激光雷达在乘用车领域的量产上车,多款搭载激光雷达的车型将在今年交付,2022年也被称为“激光雷达上车元年”。

01 激光雷达传感器vs图像传感器

激光雷达是一种用于精准获取物体三维位置的传感器,本质上是激光探测和测距。凭借在目标轮廓测量、通用障碍物检出等方面所具有的极佳性能,正在成为L4自动驾驶的核心配置。

然而,激光雷达的测距范围(一般在200米左右,不同厂商的量产型号指标各异)导致感知范围远小于图像传感器。

又由于其角分辨率(一般为0.1°或0.2°)比较小,导致点云的分辨率远小于图像传感器,在远距离感知时,投射到目标物上的点可能及其稀疏,甚至无法成像。对于点云目标检测来说,算法真正能用的点云有效距离大约只有100米左右。

图像传感器能以高帧率、高分辨率获取周围复杂信息,且价格便宜,可以部署多个不同FOV和分辨率的传感器,用于不同距离和范围的视觉感知,分辨率可以达到2K-4K。

但图像传感器是一种被动式传感器,深度感知不足,测距精度差,特别是在恶劣环境下完成感知任务的难度会大幅提升。

在面对强光、夜晚低照度、雨雪雾等天气和光线环境,智能驾驶对传感器的算法要求很高。激光雷达虽然对环境光线影响不敏感,但对于积水路面、玻璃墙面等,测距将收到很大影响。

可以看出,激光雷达和图像传感器各有优劣。大多数高级别智能驾驶乘用车选择将不同传感器进行融合使用,优势互补、冗余融合。

这样的融合感知方案也成为了高级别自动驾驶的关键技术之一。

02 基于深度学习的点云和图像融合感知

点云和图像的融合属于多传感器融合(Multi-Sensor Fusion,MSF)的技术领域,有传统的随机方法和深度学习方法,按照融合系统中信息处理的抽象程度,主要分为三个层次:

数据层融合(Early Fusion)

首先将传感器的观测数据融合,然后从融合的数据中提取特征进行识别。在3D目标检测中,PointPainting(CVPR20)采用这种方式,PointPainting方法先是对图像做语义分割,并将分割后的特征通过点到图像像素的矩阵映射到点云上,然后将这个“绘制点”的点云送到3D点云的检测器对目标Box进行回归。

一文读懂自动驾驶的激光雷达与视觉融合感知

特征层融合(Deep Fusion)

先从每种传感器提供的观测数据中提取各自然数据特征,对这些特征融合后进行识别。在基于深度学习的融合方法中,这种方式对点云和图像分支都各自采用特征提取器,对图像分支和点云分支的网络在前反馈的层次中逐语义级别融合,做到多尺度信息的语义融合。

基于深度学习的特征层融合方法,对于多个传感器之间的时空同步要求很高,一旦同步不好,直接影响特征融合的效果。同时,由于尺度和视角的差异,LiDAR和图像的特征融合很难达到1+1>2的效果。

一文读懂自动驾驶的激光雷达与视觉融合感知

决策层融合(Late Fusion)

相对前两种来说,是复杂度最低的一种融合方式。不在数据层或特征层融合,是一种目标级别的融合,不同传感器网络结构互不影响,可以独立训练和组合。

由于决策层融合的两类传感器和检测器相互独立,一旦某传感器发生故障,仍可进行传感器冗余处理,工程上鲁棒性更好。

一文读懂自动驾驶的激光雷达与视觉融合感知

随着激光雷达与视觉融合感知技术的不断迭代,以及不断积累的知识场景与案例,会出现越来越多的全栈融合计算解决方案为自动驾驶带来更加安全与可靠的未来。

以上是一文读懂自动驾驶的激光雷达与视觉融合感知的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?阅读AI索引2025:AI是您的朋友,敌人还是副驾驶?Apr 11, 2025 pm 12:13 PM

斯坦福大学以人为本人工智能研究所发布的《2025年人工智能指数报告》对正在进行的人工智能革命进行了很好的概述。让我们用四个简单的概念来解读它:认知(了解正在发生的事情)、欣赏(看到好处)、接纳(面对挑战)和责任(弄清我们的责任)。 认知:人工智能无处不在,并且发展迅速 我们需要敏锐地意识到人工智能发展和传播的速度有多快。人工智能系统正在不断改进,在数学和复杂思维测试中取得了优异的成绩,而就在一年前,它们还在这些测试中惨败。想象一下,人工智能解决复杂的编码问题或研究生水平的科学问题——自2023年

开始使用Meta Llama 3.2 -Analytics Vidhya开始使用Meta Llama 3.2 -Analytics VidhyaApr 11, 2025 pm 12:04 PM

Meta的Llama 3.2:多模式和移动AI的飞跃 Meta最近公布了Llama 3.2,这是AI的重大进步,具有强大的视觉功能和针对移动设备优化的轻量级文本模型。 以成功为基础

AV字节:Meta' llama 3.2,Google的双子座1.5等AV字节:Meta' llama 3.2,Google的双子座1.5等Apr 11, 2025 pm 12:01 PM

本周的AI景观:进步,道德考虑和监管辩论的旋风。 OpenAI,Google,Meta和Microsoft等主要参与者已经释放了一系列更新,从开创性的新车型到LE的关键转变

与机器交谈的人类成本:聊天机器人真的可以在乎吗?与机器交谈的人类成本:聊天机器人真的可以在乎吗?Apr 11, 2025 pm 12:00 PM

连接的舒适幻想:我们在与AI的关系中真的在蓬勃发展吗? 这个问题挑战了麻省理工学院媒体实验室“用AI(AHA)”研讨会的乐观语气。事件展示了加油

了解Python的Scipy图书馆了解Python的Scipy图书馆Apr 11, 2025 am 11:57 AM

介绍 想象一下,您是科学家或工程师解决复杂问题 - 微分方程,优化挑战或傅立叶分析。 Python的易用性和图形功能很有吸引力,但是这些任务需要强大的工具

3种运行Llama 3.2的方法-Analytics Vidhya3种运行Llama 3.2的方法-Analytics VidhyaApr 11, 2025 am 11:56 AM

Meta's Llama 3.2:多式联运AI强力 Meta的最新多模式模型Llama 3.2代表了AI的重大进步,具有增强的语言理解力,提高的准确性和出色的文本生成能力。 它的能力t

使用dagster自动化数据质量检查使用dagster自动化数据质量检查Apr 11, 2025 am 11:44 AM

数据质量保证:与Dagster自动检查和良好期望 保持高数据质量对于数据驱动的业务至关重要。 随着数据量和源的增加,手动质量控制变得效率低下,容易出现错误。

大型机在人工智能时代有角色吗?大型机在人工智能时代有角色吗?Apr 11, 2025 am 11:42 AM

大型机:AI革命的无名英雄 虽然服务器在通用应用程序上表现出色并处理多个客户端,但大型机是专为关键任务任务而建立的。 这些功能强大的系统经常在Heavil中找到

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
3 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
3 周前By尊渡假赌尊渡假赌尊渡假赌

热工具

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

Dreamweaver Mac版

Dreamweaver Mac版

视觉化网页开发工具

禅工作室 13.0.1

禅工作室 13.0.1

功能强大的PHP集成开发环境