首页 >科技周边 >人工智能 >人工智能可以教给我们什么?

人工智能可以教给我们什么?

王林
王林转载
2023-06-05 22:10:061321浏览

人工智能可以教给我们什么?

我们寻求机会去了解与利用想象力,不仅是为了在人工智能与人类之间进行角色分配,更是为了将两者结合,提升想象力的效用。

作者| 马丁·里维斯 杰克·富勒*

来源| 商业评论

机器会想象吗?我们通常认为计算机是通过我们给它的指令进行计算,得出结果的。我们不认为计算机具备我们所定义的想象能力:感受意外、形成反事实思维,或探索全新的可能性。然而,近来人工智能似乎正在逐步攻陷我们所说的想象力领域。

我们是否会被取代

例如,艺术家马里奥·克林格曼 (Mario Klingemann)要求GPT-3的人工智能文本生成器,用英国讽刺文学作家杰罗姆·杰罗姆 (Jerome K. Jerome)的文风写一则关于推特的故事。

《华盛顿邮报》通过自主研发的人工智能算法“Heliograf”在一年的时间内创作出850篇报道。数字设计与传媒公司AKQA通过人工智能创造出一种全新的体育运动——“速度之门”(Speedgate),并真正推广开来,还举办了速度之门联赛。

从这些例子中我们能得出什么结论?软件在产出类似人类创造物的领域中正在大踏步地向前迈进,有些情况下已经创造出了不容小觑的经济价值。因此人类与机器之间的界限的确正在发生变化,而且我们应当预见这一趋势还会继续。

人工智能可以教给我们什么?

然而,计算机还远远达不到处理想象力的某些基本能力的水平。首先就是因果关系思维模型。GPT-3所谓的神经网络构建在互联网与书籍中的海量信息基础之上。表面上看,GPT-3是基于现实世界信息的思维模型,能够创造出不那么出奇不意的新事物。但GPT-3是一种语言模型,它仅能够表现一串文本接在另一串文本后出现的概率。

人工智能研究人员盖瑞·马库斯 (Gary Marcus)与欧内斯特·戴维斯 (Ernest Davis)观察了类似GPT-3的系统后表示:“它们学习的并不是这个世界——它们学习的是文本以及人们把不同词语关联起来使用的方式。它所做的事类似于大型的剪切与粘贴工作——在它所见过的文本中将需要变化的地方进行缝补,而不是去深挖这些文本背后的底层概念。”

人工智能还缺乏想象力中另一种最基本的部分:想象的动机。动机指的不仅是推动一个流程启动的动力,而且是对于应当为什么而想象所做的引导——什么是重新思考的重要部分。

人工智能也无法把文字与这个世界关联在一起。正如哲学家大卫·查尔默斯 (David Chalmers)所写,GPT-3“做着很多需要了解人类才能做的事,但它从来没能真正把语言与感知和行动联系在一起”。

前文提到的关于体育运动、艺术创作以及新闻媒体的几个例子,都是由人类在计算机运算与真实世界中发挥着桥梁作用。

因此,我们可以得出结论,如果人工智能在没有人类介入的前提下就无法建立因果模型、连通感知与行动,也无法产生渴望或挫败,那么它在短期内便也无法取代人类的想象力。

不过我们能够看到的是,人工智能所创造的东西为人类的思考提供了极有价值的素材,人类可以把机器的输出变成一个有用的结果。这就是另一种看待问题的角度。

相比于我们是否会被取代这样的问题,更有意义的问题或许应该是这种庞大的协作体系将如何向前发展。人工智能会以什么样的方式促进人类的想象力呢?

人工智能可以帮我们进行想象吗

人工智能可以把我们从常规性的活动中解放出来;它能够执行许多核心任务,并在此基础上叠加人类的共情能力;或者它可以为想象力提供持续的刺激。

人工智能可以教给我们什么?

通过人工智能诱导想象

人工智能可以将我们从枯燥的分析工作中解放出来,尤其是异常监测工作,它能够帮我们找到有利于激发想象的意外因素。如自动化分析公司Inspirient的首席执行官格奥尔格·威滕伯格 (Georg Wittenburg)所述:“有的东西对算法来说太简单了,就比如异常现象或数据异常值的检测。我们的系统会告诉我们‘该数据集存在14个异常值或14个异常事件——不多也不少——异常清单在此’。”

但算法要服从的一项限制在于,人类依然处于整个框架的核心位置:对某个思维模型来说什么算是异常,这是由人类来设定的。人工智能长于发现,但做不到关切。对系统的设计要把我们认为要紧的事物考虑进去。不过威滕伯格的算法可以通过反复的人机交互与有针对性的分析,去学习掌握人类会对什么感兴趣。

通过人工智能充实想法

人工智能让想象力如虎添翼,它能够推动思维模型的发展进程。有一种类型的人工智能工具叫作“混合主动”交互系统,人工智能通过提出自己的建议对人类的决策进行引导与深化。这类工具目前应用于翻译与客户服务领域。

不过我们可以想象这种工具在我们重新思考时会有何作用:当我们想把有关新型医疗保健公司的想法写出来或绘制出来时,人工智能可以用相关数据、类似案例参考、各种图像以及趣闻轶事为我们的想象力提供参考。

人工智能可以教给我们什么?

通过人工智能与世界碰撞

与人工智能的交互可以是一种介于与人聊天和探索世界之间的活动。我们可以拿着一个早期想法告诉人工智能:“这是我关于新型银行的一个想法,请按照这些要点给我一个财务分析人员可能给出的反馈”或是“⋯⋯科幻小说作家可能给出的反馈”。当你拿到它给出的结果时,再加码别的要求,比如“现在让它更刺激一点”,或是“现在再增加一点批判性”。

通过人工智能进行传播

想象力所面临的一个核心挑战在于思维模型的沟通比较困难。通过将抽象的思维模型转化为图像或故事,人工智能可以轻松地帮助我们解决该问题。举例来说,英伟达公司研发了一项工具,能够将人类所绘制的笼统概念性涂鸦转化为像照片一样逼真的风景图。

可以想象,若在未来有了这样的技术,我们就能快速勾勒出一个新产品的模样或是一个重新构想下的商业形式。这种工具应该能够对文字或视觉元素进行加工。

我们可以把自己对未来公司的想法粗略地画上几笔,输入人工智能系统,然后由人工智能根据一些精彩的故事、过往的先例、其他事物的类比分析以及各种图像参考,完成具体元素的补充,换句话说,通过人工智能的精修与打磨,生成一种能够更加有效地把想法传播开来、启迪他人的东西。

通过人工智能建立新常态

人工智能能够帮我们把一个理念得到成功应用背后所具有的共性特征或者核心特征提取出来,这对于创新事物的规范化与流程化,甚至于开创一种新常态都至关重要。

尽管人工智能还无法掌握因果关系,但它可以通过规律的识别帮我们在操作手册、解决方案,以及用户操作界面的设计中提供有效的支持。随着客户将其产品使用习惯越来越多地以数据形式捕获,编制新事物的规则就变得更加有针对性。

比如说,这种方式可以应用到新耕种方法的数据分析上,它可以帮我们确定哪些属于所有情况都适用的特征,并让我们了解农民需要怎么做才能将新方法的潜能发挥出来。

再比如说,通过研究某种试验性的教育技术在使用过程与使用结果上的数据,圈定可以应用于新平台的特性范围,并指导人们学会使用这些功能。

我们需要正视的一点是,有了人工智能,一个理念的持续演化会变得更加容易,因为人工智能能够从产品与客户的互动数据中洞察到新的变化,由此不断地对指令与用户界面进行升级。

通过人工智能让想象力重现

最后,人工智能可以帮我们从企业中找出并追踪那些对于保持思维的双重性必不可少的条件。比如说,算法可以对一个公司中出现的互动与尝试数量进行评估,并在此基础上判断这样的公司是否能够将想象力保持下去。

或者我们也可以通过人工智能分析现有员工或未来员工的行为与特点,确保公司能够源源不断地收获具有反事实思维的人才。

人工智能能够教给我们什么

除了提升我们自身的想象能力,把一些精力放在开发更具想象力的人工智能技术上或可让我们更有效地了解想象力是什么,以及如何能更好地利用它。

无论人工智能技术处于什么样的发展阶段,尝试把想象编译出来的过程,就是我们逼自己把最依赖直觉、最不明确的事物清楚地呈现出来的过程。也许人类更擅长想象,但尝试构建人工想象的过程,或许能让我们对想象在个人层面以及集体层面的发生过程有更多的了解。

这对于集体层面的想象,也就是 让整个组织机构充满想象力来说尤为重要。

通过对抗进行想象

已经在创造性应用程序中得到使用的一种最有趣的人工智能算法叫作“生成对抗网络” (generative adversarial networks, GAN),它通过两种相互对立的网络发挥作用,一种是生成模型,另一种是判别模型。

GAN的工作原理与我们在个人层面与集体层面都探讨过的一个重要主题有关:多重思维以及认知多样性的重要性。把GAN运用到公司层面会是什么情形呢?我们可能需要设置互相牵制的人员网络,一部分人负责创造,另一部分人负责对这些创造进行批判。

人工智能可以教给我们什么?

其中的关键在于,这两方人员应当能够在履行自身职责的同时从对方的身上学习,不断打磨与优化各自的工作结果。这种真人版GAN可以通过游戏、比赛或其他能够制造有效对抗的形式展开,网络中的双方根据对方的输出结果与经验教训不断调整各自的运作方式。

用提示语代替程序代码 如今这些最强大的人工智能算法,比如GPT-3,有一个非常令人欣喜的特性,那就是用户与它们的交互不是通过传统的编程方式来进行的,而是使用提示语。

换一种表达方式:当人类输入一条信息时,就像是播下了一颗种子,它会生长成一个复杂的响应,从而激发人们的想象力。使用GPT-3时,你还可以对一个叫作“最优”的设置进行调整,它指的是人工智能最终输出的结果数量,人工智能会从中择一显示。

或许我们可以想象把类似的规则运用到组织机构层面。就好比一条提示语能够将人工智能中丰富的知识储备调动起来,一名首席执行官也可以通过文字、图像、视频等方式做出一个提示,让整个公司对其做出响应。

这些响应结果或许可以通过人工智能或由中介团队甄选后呈现给决策制定者,进一步激发他们的想象力。整个过程中至关重要的一点就是速度:这么做的目标不是一蹴而就地求得完备的项目提案或制作精良的视频内容,而是要获得快速响应并将其迅速反馈给管理层,不断让其出现在管理层的探讨范围内。

控制“温度” GPT-3另一个能够给人以启发的功能是调节人工智能响应结果的“温度”,也就是偏离高概率响应结果的程度。

当你想让人工智能解决一道数学题或一个事实性问题时,应当把“温度”调低:你一定不希望这类型的答案中有过多随意、跳脱的成分。但当你的目的是增加反事实想法时,把“温度”调高就是有道理的。

我们同样可以试想在企业中实践这种做法。 理想情况下,企业的领导者应该有能力为企业中不同的部门调试不同的温度,对项目中某些特定的工作流程尤其应当如此。有的公司已经在这么做了,它们设置了一些创意部门专门研究疯狂大胆的项目。

不过我们可以推动这种做法,让它成为贯穿整个公司的一种原则。一名经理对他安排下去的每一部分工作都可以设定1〜10的温度。对于他要求提供的上季度零售分析报告,可以把温度设为1 (“将平常我们关注的事实数据提供给我”)、设为6 (“增加一些推测性的探讨”),或设为10 (“问一些反事实的问题,并寻找能探索这些问题的新数据”)。

虽然目前还远未达到由机器取代人类的程度,但两者之间的边界无疑发生了变化。这种变化将会持续下去,而未来也会不断出现新的机会,帮我们更好地理解与利用好想象力。 我们寻求机会去了解与利用想象力,不仅是为了在人工智能与人类之间进行角色分配,更是为了将两者结合,提升想象力的效用。想象我们与人工智能肩并肩的样子!

作者简介:马丁·里维斯,波士顿咨询公司(BCG)亨德森智库主席,BCG旧金山办公室资深合伙人。杰克·富勒,一家心理与生理健康管理公司创始人,曾是BCG亨德森智库的专题经理。本文摘自他们合著的新书The Imagination Machine(中文版《制造想法》由中信出版集团于2023年出版)。

(本文仅作为知识分享, 并不构成提供或赖以作为投资、会计、法律或税务建议。 任何据此做出投资决策,风险自担。)

往期精彩杂志

滑动查看更多

以上是人工智能可以教给我们什么?的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文转载于:sohu.com。如有侵权,请联系admin@php.cn删除