2 月底,Meta 开源了一个大模型系列 LLaMA(直译为羊驼),参数量从 70 亿到 650 亿不等,被称为 Meta 版 ChatGPT 的雏形。之后斯坦福大学、加州大学伯克利分校等机构纷纷在 LLaMA 的基础上进行「二创」,陆续推出了 Alpaca、Vicuna 等多个开源大模型,一时间「羊驼」成为 AI 圈顶流。开源社区构建的这些类 ChatGPT 模型迭代速度非常快,并且可定制性很强,被称为 ChatGPT 的开源平替。
然而,ChatGPT 之所以能在文本理解、生成、推理等方面展现出强大的能力,是因为 OpenAI 为 ChatGPT 等大模型使用了新的训练范式 ——RLHF (Reinforcement Learning from Human Feedback) ,即以强化学习的方式依据人类反馈优化语言模型。使用 RLHF 方法,大型语言模型可与人类偏好保持对齐,遵循人类意图,最小化无益、失真或偏见的输出。但 RLHF 方法依赖于大量的人工标注和评估,通常需要数周时间、花费数千美元收集人类反馈,成本高昂。
现在,推出开源模型 Alpaca 的斯坦福大学又提出了一种模拟器 ——AlpacaFarm(直译为羊驼农场)。AlpacaFarm 能在 24 小时内仅用约 200 美元复制 RLHF 过程,让开源模型迅速改善人类评估结果,堪称 RLHF 的平替。
AlpacaFarm 试图快速、低成本地开发从人类反馈中学习的方法。为了做到这一点,斯坦福的研究团队首先确定了研究 RLHF 方法的三个主要困难:人类偏好数据的高成本、缺乏可信赖的评估、缺乏参考实现。
为了解决这三个问题,AlpacaFarm 构建了模拟注释器、自动评估和 SOTA 方法的具体实现。目前,AlpacaFarm 项目代码已开源。
- GitHub 地址:https://github.com/tatsu-lab/alpaca_farm
- 论文地址:https://tatsu-lab.github.io/alpaca_farm_paper.pdf
如下图所示,研究人员可以使用 AlpacaFarm 模拟器快速开发从人类反馈数据中学习的新方法,也能将已有 SOTA 方法迁移到实际的人类偏好数据上。
模拟注释器
AlpacaFarm 基于 Alpaca 数据集的 52k 指令构建,其中 10k 指令用于微调基本的指令遵循模型,剩余的 42k 指令用于学习人类偏好和评估,并且大部分用于从模拟注释器中学习。该研究针对 RLHF 方法的注释成本、评估和验证实现三大挑战,逐一提出解决方法。
首先,为了减少注释成本,该研究为可访问 API 的 LLM(如 GPT-4、ChatGPT)创建了 prompt,使得 AlpacaFarm 能够模拟人类反馈,成本仅为 RLHF 方法收集数据的 1/45。该研究设计了一种随机的、有噪声的注释方案,使用 13 种不同的 prompt,从多个 LLM 提取出不同的人类偏好。这种注释方案旨在捕获人类反馈的不同方面,如质量判断、注释器之间的变化性和风格偏好。
该研究通过实验表明 AlpacaFarm 的模拟是准确的。当研究团队使用 AlpacaFarm 训练和开发方法时,这些方法与使用实际人类反馈训练和开发的相同方法排名非常一致。下图显示了由 AlpacaFarm 模拟工作流和人类反馈工作流产生的方法在排名上的高度相关性。这一特性至关重要,因为它说明从模拟中得出的实验结论在实际情况下也有可能成立。
除了方法层面的相关性,AlpacaFarm 模拟器还可以复制奖励模型过度优化等定性现象,但以此针对代理奖励(surrogate reward)的持续 RLHF 训练可能会损害模型性能。下图是在人类反馈 (左) 和 AlpacaFarm (右) 两种情况下的该现象,我们可以发现 AlpacaFarm 最初捕获了模型性能提升的正确定性行为,然后随着 RLHF 训练的持续,模型性能下降。
评估
在评估方面,研究团队使用与 Alpaca 7B 的实时用户交互作为指导,并通过结合几个现有公共数据集来模拟指令分布,包括 self-instruct 数据集、anthropic helpfulness 数据集和 Open Assistant、Koala 和 Vicuna 的评估集。使用这些评估指令,该研究比较了 RLHF 模型与 Davinci003 模型的响应(response)情况,并使用一个分值度量 RLHF 模型响应更优的次数,并将这个分值称为胜率(win-rate)。如下图所示,在该研究的评估数据上进行的系统排名量化评估表明:系统排名和实时用户指令是高度相关的。这一结果说明,聚合现有的公开数据能实现与简单真实指令相近的性能。
参考方法
对于第三个挑战 —— 缺少参考实现,研究团队实现并测试了几种流行的学习算法 (如 PPO、专家迭代、best-of-n 采样)。研究团队发现在其他领域有效的更简单方法并不比该研究最初的 SFT 模型更好,这表明在真实的指令遵循环境中测试这些算法是非常重要的。
根据人工评估,PPO 算法被证明是最有效的,它将模型与 Davinci003 相比的胜率从 44% 提高到 55%,甚至超过了 ChatGPT。
这些结果表明,PPO 算法在为模型优化胜率方面是非常有效的。需要注意的是,这些结果是特定于该研究的评估数据和注释器得出的。虽然该研究的评估指令代表了实时用户指令,但它们可能无法涵盖更具有挑战性的问题,并且并不能确定有多少胜率的改进来源于利用风格偏好,而不是事实性或正确性。例如,该研究发现 PPO 模型产生的输出要长得多,并且通常为答案提供更详细的解释,如下图所示:
总的来说,使用 AlpacaFarm 在模拟偏好上训练模型能够大幅改善模型的人类评估结果,而不需要让模型在人类偏好上重新训练。虽然这种迁移过程比较脆弱,并且在效果上仍略逊于在人类偏好数据上重新训练模型。但能在 24 小时内,仅用 200 美元就复制出 RLHF 的 pipeline,让模型迅速提升人类评估性能,AlpacaFarm 这个模拟器还是太香了,是开源社区为复刻 ChatGPT 等模型的强大功能做出的又一努力。
以上是24小时内、200美元复制RLHF过程,斯坦福开源「羊驼农场」的详细内容。更多信息请关注PHP中文网其他相关文章!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

Dreamweaver CS6
视觉化网页开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),