搜索
首页科技周边人工智能超越PaLM!北大硕士提出DiVeRSe,全面刷新NLP推理排行榜

​大型语言模型可以说是现代自然语言处理技术的基石了,比如1750亿参数的GPT-3,5400亿参数的PaLM,预训练模型为下游任务提供了非常强大的few-shot learning的能力。

但推理任务仍然是一个难关,尤其是需要多步骤推理才能得到正确答案的问题。

最近有研究人员发现,只要设计合适的prompt就能引导模型进行多步骤的推理来生成最终答案,这种方法也称为思维链(chain-of-thought)推理。

图片

 思维链技术在算术基准GSM8K上将准确率从17.9%提升到了58.1%,后来引入的投票自洽(self-consistency)机制进一步将准确率提升到74.4%

图片

 简单来说,复杂的推理任务通常有多个能得到正确答案的推理路径,自洽方法通过思维链从语言模型中采样一组不同的推理路径,然后返回其中最自洽的答案。

图片

 最近,来自北大和微软的研究人员基于自洽的新方法DiVeRSe,包含三个主要的创新点,进一步提升了模型的推理能力。

图片

论文链接:https://arxiv.org/abs/2206.02336

代码链接:https://github.com/microsoft/DiVeRSe

 第一,受到自洽方式「想法不同,答案相同」的启发,即从语言模型中采样不同的推理路径,DiVeRSe在多样性上更进一步,按照「条条大路通罗马」的理念,使用多个prompt生成答案,能够生成更完整、互补的答案。

 

图片

 研究人员首先对每个问题提供5个不同的prompts,然后对每个prompt采样出20个推理路径,最后就可以对每个问题生成100个解答推理路径。

一个关键的问题是如何获取不同的prompt,假定已经获取一个样例库后,我们可以从中采样K个样例来构造一个prompt,然后重复5次即可

如果没有足够的样例,则采用self-teaching的方式提升prompt多样性,即从一部分样例中生成伪推理路径和对。

图片

 第二,在生成推理路径时,语言模型中并不存在一种机制来纠正先前步骤中的错误,可能会导致最终预测结果的混乱。DiVeRSe借鉴verifier的思想,对每个推理路径的正确性进行验证来引导投票机制。也就是说,并非所有的推理机制都是相等重要的或都是好的。

假设我们对一个问题有100条推理路径,其中60条的结果为「答案是110」,而40条路径的结果为「答案是150」。如果没有验证器(即原始自洽方法),「答案是110」为多数票,所以我们可以将110视为最终答案,并删除结果为150的40条推理路径。

verifier则是对推理路径进行打分,函数f由一个二分类器训练得到,输入为问题x,路径z和答案y,输出为positive的概率。

图片

有verifier后,假设「答案是110」的60条推理路径的平均得分是0.3;「答案是150」的40条推理路径的平均得分是0.8。   那么最终的答案应该是150,因为40*0.8>60*0.3

第三,由于答案是基于多个步骤的推理而产生的,当一个路径生成一个正确的答案时,可以认为所有的步骤都对最终的正确性做出了贡献。然而,当生成一个错误的答案时,这并不意味着所有的步骤都是错误的或对错误有贡献。

换句话说,尽管结果错了,中间一些步骤可能仍然是正确的,但一些后续的偏离方向的步骤导致了最终的错误答案。DiVeRSe设计了一个机制,为每个步骤分配一个细粒度的标签,并提出了一个step-aware的验证器,并将正确性分配到每个步骤的推理上,而非只看最终的答案。

图片

主体仍然是一个二分类器,但关键的问题为如何获得step-level的负标签,因为如果最终的答案错误,没有人工的参与,我们并不知道哪步出错,而正确的答案则过程应该都是正确的。

研究人员提出supports的概念,比如在算术任务中,需要有另外一个样例的中间结果和该中间步骤的结果相同。

图片

 基于这三点改进,研究人员在5个算数推理数据集上进行实验,可以看到在基于code-davinci-002的DiVeRSe方法都取得了新的SOTA算法,平均的提升率为6.2%

图片

在两个常识推理任务上,DiVeRSe的性能略低于基于PaLM的自洽(-2.2%),推测原因可能是常识推理任务是多项选择任务,而不是开放性的生成任务,导致了出现了更多false-positive的伪例证。

在归纳推理任务上,DiVeRSe在CLUTRR任务上取得了95.9%的成绩,超过了之前SOTA的微调结果(+28.9%)

在消融实验中,可以看到voting verifier机制对性能的提升是比较明显的。

图片

 而在大多数实验中,将voting verifier扩展为step-aware版本可以带来性能的提升。对于GSM8K上的code-davinci-002,step-aware版本的verifier则会导致性能略有下降。

可能的原因为code-davinci-002更强大,可以为GSM8K产生更高质量的推理路径,从而减少步骤级信息的必要性,即text-davinci更容易生成短/不完整的推理路径,而code-davinci对生成长内容更友好。 

图片

 论文的第一作者为Yifei Li,于2020年本科毕业于东北大学软件工程专业,目前硕士就读于北京大学,主要研究方向为自然语言处理,特别是大规模语言模型中的prompt-tuning和推理。

 文章的第二作者为Zeqi Lin,为微软亚洲研究院DKI研究员,分别于2014年和2019年获得北京大学的学士和博士学位,主要研究方向为机器学习及其在软件分析和数据分析中的应用。​

以上是超越PaLM!北大硕士提出DiVeRSe,全面刷新NLP推理排行榜的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文转载于:51CTO.COM。如有侵权,请联系admin@php.cn删除
在LLMS中调用工具在LLMS中调用工具Apr 14, 2025 am 11:28 AM

大型语言模型(LLMS)的流行激增,工具称呼功能极大地扩展了其功能,而不是简单的文本生成。 现在,LLM可以处理复杂的自动化任务,例如Dynamic UI创建和自主a

多动症游戏,健康工具和AI聊天机器人如何改变全球健康多动症游戏,健康工具和AI聊天机器人如何改变全球健康Apr 14, 2025 am 11:27 AM

视频游戏可以缓解焦虑,建立焦点或支持多动症的孩子吗? 随着医疗保健在全球范围内挑战,尤其是在青年中的挑战,创新者正在转向一种不太可能的工具:视频游戏。现在是世界上最大的娱乐印度河之一

没有关于AI的投入:获胜者,失败者和机遇没有关于AI的投入:获胜者,失败者和机遇Apr 14, 2025 am 11:25 AM

“历史表明,尽管技术进步推动了经济增长,但它并不能自行确保公平的收入分配或促进包容性人类发展,”乌托德秘书长Rebeca Grynspan在序言中写道。

通过生成AI学习谈判技巧通过生成AI学习谈判技巧Apr 14, 2025 am 11:23 AM

易于使用,使用生成的AI作为您的谈判导师和陪练伙伴。 让我们来谈谈。 对创新AI突破的这种分析是我正在进行的《福布斯》列的最新覆盖范围的一部分,包括识别和解释

泰德(Ted)从Openai,Google,Meta透露出庭,与我自己自拍泰德(Ted)从Openai,Google,Meta透露出庭,与我自己自拍Apr 14, 2025 am 11:22 AM

在温哥华举行的TED2025会议昨天在4月11日举行了第36版。它有来自60多个国家 /地区的80个发言人,包括Sam Altman,Eric Sc​​hmidt和Palmer Luckey。泰德(Ted)的主题“人类重新构想”是量身定制的

约瑟夫·斯蒂格利兹(Joseph Stiglitz约瑟夫·斯蒂格利兹(Joseph StiglitzApr 14, 2025 am 11:21 AM

约瑟夫·斯蒂格利茨(Joseph Stiglitz)是2001年著名的经济学家,是诺贝尔经济奖的获得者。斯蒂格利茨认为,AI可能会使现有的不平等和合并权力恶化,并在几个主导公司的手中加剧,最终破坏了经济的经济。

什么是图形数据库?什么是图形数据库?Apr 14, 2025 am 11:19 AM

图数据库:通过关系彻底改变数据管理 随着数据的扩展及其特征在各个字段中的发展,图形数据库正在作为管理互连数据的变革解决方案的出现。与传统不同

LLM路由:策略,技术和Python实施LLM路由:策略,技术和Python实施Apr 14, 2025 am 11:14 AM

大型语言模型(LLM)路由:通过智​​能任务分配优化性能 LLM的快速发展的景观呈现出各种各样的模型,每个模型都具有独特的优势和劣势。 有些在创意内容gen上表现出色

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

AI Hentai Generator

AI Hentai Generator

免费生成ai无尽的。

热门文章

R.E.P.O.能量晶体解释及其做什么(黄色晶体)
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳图形设置
3 周前By尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您听不到任何人,如何修复音频
4 周前By尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解锁Myrise中的所有内容
1 个月前By尊渡假赌尊渡假赌尊渡假赌

热工具

SublimeText3汉化版

SublimeText3汉化版

中文版,非常好用

SublimeText3 Mac版

SublimeText3 Mac版

神级代码编辑软件(SublimeText3)

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

DVWA

DVWA

Damn Vulnerable Web App (DVWA) 是一个PHP/MySQL的Web应用程序,非常容易受到攻击。它的主要目标是成为安全专业人员在合法环境中测试自己的技能和工具的辅助工具,帮助Web开发人员更好地理解保护Web应用程序的过程,并帮助教师/学生在课堂环境中教授/学习Web应用程序安全。DVWA的目标是通过简单直接的界面练习一些最常见的Web漏洞,难度各不相同。请注意,该软件中