首页 >后端开发 >Python教程 >Python实现LR经典算法

Python实现LR经典算法

零到壹度
零到壹度原创
2018-04-19 16:55:445710浏览

本文实例讲述了Python实现LR经典算法。分享给大家供大家参考,具体如下:

(一)认识Logistic回归(LR)分类器

首先,Logistic回归虽然名字里带“回归”,但是它实际上是一种分类方法,主要用于两分类问题,利用Logistic函数(或称为Sigmoid函数),自变量取值范围为(-INF, INF),自变量的取值范围为(0,1),函数形式为:


由于sigmoid函数的定义域是(-INF, +INF),而值域为(0, 1)。因此最基本的LR分类器适合于对两分类(类0,类1)目标进行分类。Sigmoid 函数是个很漂亮的“S”形,如下图所示:


LR分类器(Logistic Regression Classifier)目的就是从训练数据特征学习出一个0/1分类模型--这个模型以样本特征的线性组合作为自变量,使用logistic函数将自变量映射到(0,1)上。因此LR分类器的求解就是求解一组权值是是名义变量--dummy,为常数,实际工程中常另x0=1.0。不管常数项有没有意义,最好保留),并代入Logistic函数构造出一个预测函数:

函数的值表示结果为1的概率,就是特征属于y=1的概率。因此对于输入x分类结果为类别1和类别0的概率分别为:


当我们要判别一个新来的特征属于哪个类时,按照下式求出一个z值:

 (x1,x2,...,xn是某样本数据的各个特征,维度为n)

进而求出---若大于0.5就是y=1的类,反之属于y=0类。(注意:这里依然假设统计样本是均匀分布的,所以设阈值为0.5)。LR分类器的这一组权值如何求得的呢?这就需要涉及到极大似然估计MLE和优化算法的概念了,数学中最优化算法常用的就是梯度上升(下降)算法。

Logistic回归可以也可以用于多分类的,但是二分类的更为常用也更容易解释。所以实际中最常用的就是二分类的Logistic回归。LR分类器适用数据类型:数值型和标称型数据。其优点是计算代价不高,易于理解和实现;其缺点是容易欠拟合,分类精度可能不高。

(二)Logistic回归数学推导

1,梯度下降法求解Logistic回归

首先,理解下述数学推导过程需要较多的导数求解公式,可以参考“常用基本初等函数求导公式积分公式”。

假设有n个观测样本,观测值分别为为给定条件下得到yi=1的概率。在同样条件下得到yi=0的条件概率为。于是,得到一个观测值的概率为

-----此公式实际上是综合公式(1)得出

因为各项观测独立,所以它们的联合分布可以表示为各边际分布的乘积:

(m表统计样本数目)                              

上式称为n个观测的似然函数。我们的目标是能够求出使这一似然函数的值最大的参数估计。于是,最大似然估计的关键就是求出参数,使上式取得最大值。

对上述函数求对数:


最大似然估计就是求使上式取最大值时的θ,这里可以使用梯度上升法求解,求得的θ就是要求的最佳参数。在Andrew Ng的课程中将J(θ)取为下式,即:J(θ)=-(1/m)l(θ),J(θ)最小值时的θ则为要求的最佳参数。通过梯度下降法求最小值。θ的初始值可以全部为1.0,更新过程为:

(j表样本第j个属性,共n个;a表示步长--每次移动量大小,可自由指定)



因此,θ(可以设初始值全部为1.0)的更新过程可以写成:


 (i表示第i个统计样本,j表样本第j个属性;a表示步长)

该公式将一直被迭代执行,直至达到收敛(在每一步迭代中都减小,如果某一步减少的值少于某个很小的值(小于0.001), 则其判定收敛)或某个停止条件为止(比如迭代次数达到某个指定值或算法达到某个可以允许的误差范围)。

2,向量化Vectorization求解

Vectorization是使用矩阵计算来代替for循环,以简化计算过程,提高效率。如上式,Σ(...)是一个求和的过程,显然需要一个for语句循环m次,所以根本没有完全的实现vectorization。下面介绍向量化的过程:

约定训练数据的矩阵形式如下,x的每一行为一条训练样本,而每一列为不同的特称取值:


g(A)的参数A为一列向量,所以实现g函数时要支持列向量作为参数,并返回列向量。由上式可知hθ(x)-y可由g(A)-y一次计算求得。

θ更新过程可以改为:



综上所述,Vectorization后θ更新的步骤如下:

(1)求A=X*θ(此处为矩阵乘法,X是(m,n+1)维向量,θ是(n+1,1)维列向量,A就是(m,1)维向量)

(2)求E=g(A)-y(E、y是(m,1)维列向量)

(3)求 (a表示步长)


3,步长a的选择

a的取值也是确保梯度下降收敛的关键点。值太小则收敛慢,值太大则不能保证迭代过程收敛(迈过了极小值)。要确保梯度下降算法正确运行,需要保证 J(θ)在每一步迭代中都减小。如果步长a取值正确,那么J(θ)应越来越小。所以a的取值判断准则是:如果J(θ)变小了表明取值正确,否则减小a的值。

选择步长a的经验为:选取一个a值,每次约3倍于前一个数,如果迭代不能正常进行(J增大了,步长太大,迈过了碗底)则考虑使用更小的步长,如果收敛较慢则考虑增大步长,a取值示例如:

…, 0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1…。

4,特征值归一化

Logistic 回归也是一种回归算法,多维特征的训练数据进行回归采取梯度法求解时其特征值必须做scale,确保特征的取值范围在相同的尺度内计算过程才会收敛(因为特征值得取值范围可能相差甚大,如特征1取值为(1000-2000),特征2取值为(0.1-0.2))。feature scaling的方法可自定义,常用的有:

1) mean normalization (or standardization)

(X - mean(X))/std(X),std(X)表示样本的标准差

2) rescaling

(X - min) / (max - min)

5,算法优化--随机梯度法

梯度上升(下降)算法在每次更新回归系数时都需要遍历整个数据集, 该方法在处理100个左右的数据集时尚可,但如果有数十亿样本和成千上万的特征,那么该方法的计算复杂度就太高了。一种改进方法是一次仅用一个样本点来更新回归系数,该方法称为随机梯度算法。由于可以在新样本到来时对分类器进行增量式更新,它可以在新数据到来时就完成参数更新,而不需要重新读取整个数据集来进行批处理运算,因而随机梯度算法是一个在线学习算法。(与“在线学习”相对应,一次处理所有数据被称作是“批处理”)。随机梯度算法与梯度算法的效果相当,但具有更高的计算效率。

(三)Python实现Logistic回归算法

上节通过Andrew Ng的课程对J(θ)=-(1/m)l(θ)采取梯度下降法求解说明了Logistic回归的求解过程,本节Python实现算法的过程依然直接对J(θ)采取梯度上升法或者随机梯度上升法求解,LRTrain对象同时实现了采取梯度上升法或者随机梯度上升法求解过程。

LR分类器学习包中包含lr.py/object_json.py/test.py三个模块。lr模块通过对象logisticRegres实现了LR分类器,支持gradAscent('Grad') and randomGradAscent('randomGrad')两种求解方法(二选一,classifierArray只存储一种分类求解结果,当然你也可以定义两个classifierArray同时支持两种求解方法)。

test模块中是利用LR分类器根据疝气病症预测病马死亡率的应用。该数据存在一个问题--数据由30%的丢失率,这里采用特殊值0替代,因为0不会影响LR分类器的权值更新。

训练数据中样本特征值的部分缺失是很棘手的问题,很多文献致力于解决该问题,因为数据直接丢掉太可惜,重新获取代价也昂贵。一些可选的数据丢失处理方法包括:

□使用可用特征的均值来填补缺失值;

□使用特殊值来±真补缺失值,如-1;

□忽略有缺失值的样本;

□使用相似样本的均值添补缺失值;

□使用另外的机器学习算法预测缺失值。

LR分类器算法学习包下载地址是:

machine learning Logistic regression

(四)Logistic回归应用

Logistic回归的主要用途:

寻找危险因素:寻找某一疾病的危险因素等;

预测:根据模型,预测在不同的自变量情况下,发生某病或某种情况的概率有多大;

判别:实际上跟预测有些类似,也是根据模型,判断某人属于某病或属于某种情况的概率有多大,也就是看一下这个人有多大的可能性是属于某病。

Logistic回归主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率,等等。例如,想探讨胃癌发生的危险因素,可以选择两组人群,一组是胃癌组,一组是非胃癌组,两组人群肯定有不同的体征和生活方式等。这里的因变量就是是否胃癌,即“是”或“否”,自变量就可以包括很多了,例如年龄、性别、饮食习惯、幽门螺杆菌感染等。自变量既可以是连续的,也可以是分类的。


相关推荐:

逻辑回归之梯形下降计算最值

LR深入理解

机器学习常用算法(LDA,CNN,LR)原理简述

LR推导

以上是Python实现LR经典算法的详细内容。更多信息请关注PHP中文网其他相关文章!

声明:
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn