搜索
首页后端开发Python教程 python实现RSA算法

python实现RSA算法

Apr 19, 2018 pm 05:02 PM
python

本文实例讲述了 python 实现RSA算法。分享给大家供大家参考,具体如下:

一、基础数论

1、互质关系

  • 如果两个正整数,除了1以外,没有其他公因子,我们就称这两个数是互质关系(coprime)。比如,15和32没有公因子,所以它们是互质关系。这说明,不是质数也可以构成互质关系。

2、欧拉函数

  • 定义:任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?),计算这个值的方法就叫做欧拉函数,以φ(n)表示。

  • 欧拉函数求法及性质:

  1. 对于素数p, φ(p)=p-1,对于对两个素数p,q, φ(pq)=pq-1,欧拉函数是积性函数,但不是完全积性函数.

  2. 对于一个正整数N的素数幂分解N=P1^q1*P2^q2*...*Pn^qn,则φ(N)=N*(1-1/P1)*(1-1/P2)*…*(1-1/Pn).

  3. 除了N=2,φ(N)都是偶数.

  4. 如果n可以分解成两个互质的整数之积,n = p1 × p2,则φ(n) = φ(p1p2) = φ(p1)φ(p2)

二、RSA加密

第一步,随机选择两个不相等的质数p和q。

爱丽丝选择了61和53。(实际应用中,这两个质数越大,就越难破解。)

第二步,计算p和q的乘积n。

爱丽丝就把61和53相乘。

  n = 61×53 = 3233

n的长度就是密钥长度。3233写成二进制是110010100001,一共有12位,所以这个密钥就是12位。实际应用中,RSA密钥一般是1024位,重要场合则为2048位。

第三步,计算n的欧拉函数φ(n)。

根据公式:

  φ(n) = (p-1)(q-1)

爱丽丝算出φ(3233)等于60×52,即3120。

第四步,随机选择一个整数e,条件是1< e < φ(n),且e与φ(n) 互质。

爱丽丝就在1到3120之间,随机选择了17。(实际应用中,常常选择65537。)

第五步,计算e对于φ(n)的模反元素d。

所谓"模反元素"就是指有一个整数d,可以使得ed被φ(n)除的余数为1。

  ed ≡ 1 (mod φ(n))

这个式子等价于

  ed - 1 = kφ(n)

于是,找到模反元素d,实质上就是对下面这个二元一次方程求解。

  ex + φ(n)y = 1

已知 e=17, φ(n)=3120,

  17x + 3120y = 1

这个方程可以用"扩展欧几里得算法"求解,此处省略具体过程。总之,爱丽丝算出一组整数解为 (x,y)=(2753,-15),即 d=2753。

至此所有计算完成。

第六步,将n和e封装成公钥,n和d封装成私钥。

在爱丽丝的例子中,n=3233,e=17,d=2753,所以公钥就是 (3233,17),私钥就是(3233, 2753)。

实际应用中,公钥和私钥的数据都采用ASN.1格式表达(实例)。

七、RSA算法的可靠性

回顾上面的密钥生成步骤,一共出现六个数字:

  p
  q
  n
  φ(n)
  e
  d

这六个数字之中,公钥用到了两个(n和e),其余四个数字都是不公开的。其中最关键的是d,因为n和d组成了私钥,一旦d泄漏,就等于私钥泄漏。

那么,有无可能在已知n和e的情况下,推导出d?

  (1)ed≡1 (mod φ(n))。只有知道e和φ(n),才能算出d。

  (2)φ(n)=(p-1)(q-1)。只有知道p和q,才能算出φ(n)。

  (3)n=pq。只有将n因数分解,才能算出p和q。

结论:如果n可以被因数分解,d就可以算出,也就意味着私钥被破解。

可是,大整数的因数分解,是一件非常困难的事情。目前,除了暴力破解,还没有发现别的有效方法。维基百科这样写道:

  "对极大整数做因数分解的难度决定了RSA算法的可靠性。换言之,对一极大整数做因数分解愈困难,RSA算法愈可靠。

  假如有人找到一种快速因数分解的算法,那么RSA的可靠性就会极度下降。但找到这样的算法的可能性是非常小的。今天只有短的RSA密钥才可能被暴力破解。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。

  只要密钥长度足够长,用RSA加密的信息实际上是不能被解破的。"

举例来说,你可以对3233进行因数分解(61×53),但是你没法对下面这个整数进行因数分解。

  12301866845301177551304949
  58384962720772853569595334
  79219732245215172640050726
  36575187452021997864693899
  56474942774063845925192557
  32630345373154826850791702
  61221429134616704292143116
  02221240479274737794080665
  351419597459856902143413

它等于这样两个质数的乘积:

  33478071698956898786044169
  84821269081770479498371376
  85689124313889828837938780
  02287614711652531743087737
  814467999489
    ×
  36746043666799590428244633
  79962795263227915816434308
  76426760322838157396665112
  79233373417143396810270092
  798736308917

事实上,这大概是人类已经分解的最大整数(232个十进制位,768个二进制位)。比它更大的因数分解,还没有被报道过,因此目前被破解的最长RSA密钥就是768位。

八、加密和解密

有了公钥和密钥,就能进行加密和解密了。

(1)加密要用公钥 (n,e)

假设鲍勃要向爱丽丝发送加密信息m,他就要用爱丽丝的公钥 (n,e) 对m进行加密。这里需要注意,m必须是整数(字符串可以取ascii值或unicode值),且m必须小于n。

所谓"加密",就是算出下式的c:

  me ≡ c (mod n)

爱丽丝的公钥是 (3233, 17),鲍勃的m假设是65,那么可以算出下面的等式:

  6517 ≡ 2790 (mod 3233)

于是,c等于2790,鲍勃就把2790发给了爱丽丝。

(2)解密要用私钥(n,d)

爱丽丝拿到鲍勃发来的2790以后,就用自己的私钥(3233, 2753) 进行解密。可以证明,下面的等式一定成立:

  cd ≡ m (mod n)

也就是说,c的d次方除以n的余数为m。现在,c等于2790,私钥是(3233, 2753),那么,爱丽丝算出

  27902753 ≡ 65 (mod 3233)

因此,爱丽丝知道了鲍勃加密前的原文就是65。

至此,"加密--解密"的整个过程全部完成。

我们可以看到,如果不知道d,就没有办法从c求出m。而前面已经说过,要知道d就必须分解n,这是极难做到的,所以RSA算法保证了通信安全。

你可能会问,公钥(n,e) 只能加密小于n的整数m,那么如果要加密大于n的整数,该怎么办?有两种解决方法:一种是把长信息分割成若干段短消息,每段分别加密;另一种是先选择一种"对称性加密算法"(比如DES),用这种算法的密钥加密信息,再用RSA公钥加密DES密钥。

九、私钥解密的证明

最后,我们来证明,为什么用私钥解密,一定可以正确地得到m。也就是证明下面这个式子:

  cd ≡ m (mod n)

因为,根据加密规则

  me ≡ c (mod n)

于是,c可以写成下面的形式:

  c = me - kn

将c代入要我们要证明的那个解密规则:

  (me - kn)d ≡ m (mod n)

它等同于求证

  med ≡ m (mod n)

由于

  ed ≡ 1 (mod φ(n))

所以

  ed = hφ(n)+1

将ed代入:

  mhφ(n)+1 ≡ m (mod n)

接下来,分成两种情况证明上面这个式子。

(1)m与n互质。

根据欧拉定理,此时

  mφ(n) ≡ 1 (mod n)

得到

  (mφ(n))h × m ≡ m (mod n)

原式得到证明。

(2)m与n不是互质关系。

此时,由于n等于质数p和q的乘积,所以m必然等于kp或kq。

以 m = kp为例,考虑到这时k与q必然互质,则根据欧拉定理,下面的式子成立:

  (kp)q-1 ≡ 1 (mod q)

进一步得到

  [(kp)q-1]h(p-1) × kp ≡ kp (mod q)

  (kp)ed ≡ kp (mod q)

将它改写成下面的等式

  (kp)ed = tq + kp

这时t必然能被p整除,即 t=t'p

  (kp)ed = t'pq + kp

因为 m=kp,n=pq,所以

  med ≡ m (mod n)

原式得到证明。



python 实现

    强大的 python 有专门实现密码技术的 pycrypto 三方库,然而想要实现 rsa,我们不需要这么高大上的工具,只需要加载一个 rsa 的三方库即可。

    show you the code, NO bb:

#实现公钥加密 RSA

import rsa
import time
#计算下时间

start_time = time.time()
key = rsa.newkeys(1024) #数字代表 p * q 产生的存储空间 bit 大小, 也就是密文长度,数字越大,时间越长
privateKey = key[1]
publicKey = key[0]
#print(privateKey)
#print(publicKey)
end_time = time.time()
print("make a key:", end_time - start_time)
#产生公钥和私钥

message = &#39;Taiyuan is the best city of China.&#39;
message = message.encode()

cryptedMessage = rsa.encrypt(message, publicKey)
print("crypted:", cryptedMessage)
print("length of cryptedMessage:", len(cryptedMessage))
# 加密的过程

decrypetdMessage = rsa.decrypt(cryptedMessage, privateKey)
print("decrypet:", decrypetdMessage)
# 解密的过程

now_time = time.time()
print("crypt and decrypt:", now_time - end_time)


相关推荐:

带你彻底理解RSA算法原理

RSA加密算法

25行代码实现完整的RSA算法

RSA算法详解及C语言实现

以上是 python实现RSA算法的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
Python:深入研究汇编和解释Python:深入研究汇编和解释May 12, 2025 am 12:14 AM

pythonisehybridmodelofcompilationand interpretation:1)thepythoninterspretercompilesourcececodeintoplatform- interpententbybytecode.2)thepytythonvirtualmachine(pvm)thenexecuteCutestestestesteSteSteSteSteSteSthisByTecode,BelancingEaseofuseWithPerformance。

Python是一种解释或编译语言,为什么重要?Python是一种解释或编译语言,为什么重要?May 12, 2025 am 12:09 AM

pythonisbothinterpretedAndCompiled.1)它的compiledTobyTecodeForportabilityAcrosplatforms.2)bytecodeisthenInterpreted,允许fordingfordforderynamictynamictymictymictymictyandrapiddefupment,尽管Ititmaybeslowerthananeflowerthanancompiledcompiledlanguages。

对于python中的循环时循环与循环:解释了关键差异对于python中的循环时循环与循环:解释了关键差异May 12, 2025 am 12:08 AM

在您的知识之际,而foroopsareideal insinAdvance中,而WhileLoopSareBetterForsituations则youneedtoloopuntilaconditionismet

循环时:实用指南循环时:实用指南May 12, 2025 am 12:07 AM

ForboopSareSusedwhenthentheneMberofiterationsiskNownInAdvance,而WhileLoopSareSareDestrationsDepportonAcondition.1)ForloopSareIdealForiteratingOverSequencesLikelistSorarrays.2)whileLeleLooleSuitableApeableableableableableableforscenarioscenarioswhereTheLeTheLeTheLeTeLoopContinusunuesuntilaspecificiccificcificCondond

Python:它是真正的解释吗?揭穿神话Python:它是真正的解释吗?揭穿神话May 12, 2025 am 12:05 AM

pythonisnotpuroly interpred; itosisehybridablectofbytecodecompilationandruntimeinterpretation.1)PythonCompiLessourceceCeceDintobyTecode,whitsthenexecececected bytybytybythepythepythepythonvirtirtualmachine(pvm).2)

您可以使用Python中的循环加入列表吗?您可以使用Python中的循环加入列表吗?May 10, 2025 am 12:14 AM

是的,YouCanconCatenatElistsusingAloopInpyThon.1)使用eparateLoopsForeachListToAppendIteMstoaresultList.2)useanestedlooptoiterateOverMultipliplipliplipliplipliplipliplipliplipliplistforamoreConciseApprace.3)

condenate列表python:使用,扩展()等condenate列表python:使用,扩展()等May 10, 2025 am 12:12 AM

ThemostefficientmethodsforconcatenatinglistsinPythonare:1)theextend()methodforin-placemodification,2)itertools.chain()formemoryefficiencywithlargedatasets.Theextend()methodmodifiestheoriginallist,makingitmemory-efficientbutrequirescautionifpreserving

Python循环:示例和最佳实践Python循环:示例和最佳实践May 10, 2025 am 12:05 AM

pythonboopsincludeforandwhileloops,with forloopsidealforequencessand and whileloopsforcondition repetition.bestpracticesinvolve:1)使用listComprehensionsforshensionsforsimpletranspletransformations,2)obseringEnumerateForIndex-valuepairs,3)optingftingftingfortermornemoremoremoremore

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

记事本++7.3.1

记事本++7.3.1

好用且免费的代码编辑器

EditPlus 中文破解版

EditPlus 中文破解版

体积小,语法高亮,不支持代码提示功能

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

功能强大的PHP集成开发环境