这篇文章主要介绍了python利用拉链法实现字典的方法,文中给出了详细的示例代码,相信对大家具有一定的参考价值,需要的朋友可以们下面来一起看看吧。
前言
字典也叫散列表,最大的特点是通过key来查找其对应的值其时间复杂度是O(1),下面这篇文章就来给大家介绍介绍python利用拉链法实现字典的方法。
在Python中怎样用列表实现字典?
用列表实现字典最大的问题就是解决hash冲突,如果在列表中通过计算不同的key得到相同的相同了位置,这时候应该怎么办?
最简单的办法就是使用拉链法.
拉链法:就是在一个列表中每个位置再添加一个列表,这样就算是有hash冲突也能够存储进去,当选取的hash函数足够好,
num的数足够大,就能够保证列表中的每一个列表里面只有一个元素。根据key计算的元素所在的位置,然后来取值就能达
到O(1)的时间。
方法示例
class MyDict: def init(self, num=100): # 指定列表大小 self._num = num self._lst = [] for _ in range(self._num): self._lst.append([]) def update(self, key, value): # 添加 key-value key_index = hash(key) % self._num for i, (k, v) in enumerate(self._lst[key_index]): if key == k: self._lst[key_index][i] = [key, value] break else: self._lst[key_index].append([key, value]) def get(self, key): # 根据指定的 key 弹出值 key_index = hash(key) % self._num for k, v in self._lst[key_index]: if k == key: return v else: raise KeyError('No such {} key'.format(key)) def pop(self, key): # 根据 key 弹出元素 并且删除 key_index = hash(key) % self._num for i, (k, v) in enumerate(self._lst[key_index]): if k == key: result = v self._lst.pop(i) return result else: raise KeyError('No such {} key'.format(key)) def getitem(self, key): # 可以通过下标来取值 key_index = hash(key) % self._num for k, v in self._lst[key_index]: if k == key: return v else: raise KeyError('No such {} key'.format(key)) def keys(self): # 取得所有的key for index in range(self._num): for k, v in self._lst[index]: yield k def values(self): # 取得所有的 value for index in range(self._num): for k, v in self._lst[index]: yield v def items(self): # 取得所有的条目 for index in range(self._num): for item in self._lst[index]: yield item
通过key查到的时间,可见下图
以上是详解python利用拉链法实现字典方法示例代码的详细内容。更多信息请关注PHP中文网其他相关文章!

ArraySareAryallyMoremory-Moremory-forigationDataDatueTotheIrfixed-SizenatureAntatureAntatureAndirectMemoryAccess.1)arraysStorelelementsInAcontiguxufulock,ReducingOveringOverheadHeadefromenterSormetormetAdata.2)列表,通常

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python列表可以存储不同类型的数据。示例列表包含整数、字符串、浮点数、布尔值、嵌套列表和字典。列表的灵活性在数据处理和原型设计中很有价值,但需谨慎使用以确保代码的可读性和可维护性。

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

theSostCommonlyusedModuleForCreatingArraysInpyThonisnumpy.1)NumpyProvidEseffitedToolsForarrayOperations,Idealfornumericaldata.2)arraysCanbeCreatedDusingsnp.Array()for1dand2Structures.3)

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。 1)在金融中,使用内存映射文件和NumPy库可显着提升数据处理速度。 2)科研领域,HDF5文件优化数据存储和检索。 3)医疗中,数据库优化技术如索引和分区提高数据查询性能。 4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显着提升系统性能和可扩展性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

SublimeText3汉化版
中文版,非常好用

记事本++7.3.1
好用且免费的代码编辑器

禅工作室 13.0.1
功能强大的PHP集成开发环境

PhpStorm Mac 版本
最新(2018.2.1 )专业的PHP集成开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。