融化 Pandas DataFrames
什么是 Melt?
融化 pandas DataFrame 涉及从宽格式重构它,其中每一列代表一个变量,长格式,其中每行代表一个观察值,每列代表一个特征值
如何熔化 DataFrame
要熔化 DataFrame,请使用 pd.melt() 函数,并指定以下参数:
- id_vars:列保留为唯一标识符(通常是主键或索引)。
- value_vars:要熔化的列(转换为行)。如果未指定,则融化不在 id_vars 中的所有列。
- var_name:将包含原始列名称的列的名称。
- value_name:将包含原始列的列的名称值。
例如,融化以下内容DataFrame:
import pandas as pd df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'], 'Math': ['A+', 'B', 'A', 'F', 'D', 'C'], 'English': ['C', 'B', 'B', 'A+', 'F', 'A']})
我们可以使用:
df_melted = pd.melt(df, id_vars=['Name'], value_vars=['Math', 'English'])
这将输出熔化的DataFrame:
Name variable value 0 Bob Math A+ 1 John Math B 2 Foo Math A 3 Bar Math F 4 Alex Math D 5 Tom Math C 6 Bob English C 7 John English B 8 Foo English B 9 Bar English A+ 10 Alex English F 11 Tom English A
何时使用Melt
当您需要执行以下操作时,熔化非常有用:
- 变换宽幅将数据转换为适合绘图或可视化的格式。
- 为需要特定数据格式的机器学习模型准备数据。
- 按唯一标识符对观察结果进行分组,并对融合的数据执行聚合或转换。
示例场景
问题1:将下面的 DataFrame 转换为融合格式,包含名称、年龄、主题和成绩列。
df = pd.DataFrame({'Name': ['Bob', 'John', 'Foo', 'Bar', 'Alex', 'Tom'], 'Math': ['A+', 'B', 'A', 'F', 'D', 'C'], 'English': ['C', 'B', 'B', 'A+', 'F', 'A']})
df_melted = pd.melt(df, id_vars=['Name', 'Age'], var_name='Subject', value_name='Grade') print(df_melted)
输出:
Name Age Subject Grade 0 Bob 13 English C 1 John 16 English B 2 Foo 16 English B 3 Bar 15 English A+ 4 Alex 17 English F 5 Tom 12 English A 6 Bob 13 Math A+ 7 John 16 Math B 8 Foo 16 Math A 9 Bar 15 Math F 10 Alex 17 Math D 11 Tom 12 Math C
问题 2:过滤问题 1 中融化的 DataFrame 以仅包含数学
df_melted_math = pd.melt(df, id_vars=['Name', 'Age'], value_vars=['Math'], var_name='Subject', value_name='Grade') print(df_melted_math)
输出:
Name Age Subject Grade 0 Bob 13 Math A+ 1 John 16 Math B 2 Foo 16 Math A 3 Bar 15 Math F 4 Alex 17 Math D 5 Tom 12 Math C
问题 3:按年级对融化的 DataFrame 进行分组,并计算每个 DataFrame 的唯一名称和主题成绩。
df_melted_grouped = df_melted.groupby(['Grade']).agg({'Name': ', '.join, 'Subject': ', '.join}).reset_index() print(df_melted_grouped)
输出:
Grade Name Subjects 0 A Foo, Tom Math, English 1 A+ Bob, Bar Math, English 2 B John, John, Foo Math, English, English 3 C Bob, Tom English, Math 4 D Alex Math 5 F Bar, Alex Math, English
问题 4:将问题 1 中融化的 DataFrame 解回其原始状态格式。
df_unmelted = df_melted.pivot_table(index=['Name', 'Age'], columns='Subject', values='Grade', aggfunc='first').reset_index() print(df_unmelted)
输出:
Name Age English Math 0 Alex 17 F D 1 Bar 15 A+ F 2 Bob 13 C A+ 3 Foo 16 B A 4 John 16 B B 5 Tom 12 A C
问题 5:按名称对问题 1 中融合的 DataFrame 进行分组,并按逗号。
df_melted_by_name = df_melted.groupby('Name').agg({'Subject': ', '.join, 'Grade': ', '.join}).reset_index() print(df_melted_by_name)
输出:
Name Subject Grades 0 Alex Math, English D, F 1 Bar Math, English F, A+ 2 Bob Math, English A+, C 3 Foo Math, English A, B 4 John Math, English B, B 5 Tom Math, English C, A
问题 6:将整个 DataFrame 合并为一列值,另一列包含原始列名称.
df_melted_full = df.melt(ignore_index=False) print(df_melted_full)
输出:
Name Age variable value 0 Bob 13 Math A+ 1 John 16 Math B 2 Foo 16 Math A 3 Bar 15 Math F 4 Alex 17 Math D 5 Tom 12 Math C 6 Bob 13 English C 7 John 16 English B 8 Foo 16 English B 9 Bar 15 English A+ 10 Alex 17 English F 11 Tom 12 English A
以上是如何融化 Pandas DataFrame 以及何时使用此技术?的详细内容。更多信息请关注PHP中文网其他相关文章!

本文解释了如何使用美丽的汤库来解析html。 它详细介绍了常见方法,例如find(),find_all(),select()和get_text(),以用于数据提取,处理不同的HTML结构和错误以及替代方案(SEL)

Linux终端中查看Python版本时遇到权限问题的解决方法当你在Linux终端中尝试查看Python的版本时,输入python...

Python的statistics模块提供强大的数据统计分析功能,帮助我们快速理解数据整体特征,例如生物统计学和商业分析等领域。无需逐个查看数据点,只需查看均值或方差等统计量,即可发现原始数据中可能被忽略的趋势和特征,并更轻松、有效地比较大型数据集。 本教程将介绍如何计算平均值和衡量数据集的离散程度。除非另有说明,本模块中的所有函数都支持使用mean()函数计算平均值,而非简单的求和平均。 也可使用浮点数。 import random import statistics from fracti

Python 对象的序列化和反序列化是任何非平凡程序的关键方面。如果您将某些内容保存到 Python 文件中,如果您读取配置文件,或者如果您响应 HTTP 请求,您都会进行对象序列化和反序列化。 从某种意义上说,序列化和反序列化是世界上最无聊的事情。谁会在乎所有这些格式和协议?您想持久化或流式传输一些 Python 对象,并在以后完整地取回它们。 这是一种在概念层面上看待世界的好方法。但是,在实际层面上,您选择的序列化方案、格式或协议可能会决定程序运行的速度、安全性、维护状态的自由度以及与其他系

本文比较了Tensorflow和Pytorch的深度学习。 它详细介绍了所涉及的步骤:数据准备,模型构建,培训,评估和部署。 框架之间的关键差异,特别是关于计算刻度的

该教程建立在先前对美丽汤的介绍基础上,重点是简单的树导航之外的DOM操纵。 我们将探索有效的搜索方法和技术,以修改HTML结构。 一种常见的DOM搜索方法是EX

本文讨论了诸如Numpy,Pandas,Matplotlib,Scikit-Learn,Tensorflow,Tensorflow,Django,Blask和请求等流行的Python库,并详细介绍了它们在科学计算,数据分析,可视化,机器学习,网络开发和H中的用途

本文指导Python开发人员构建命令行界面(CLIS)。 它使用Typer,Click和ArgParse等库详细介绍,强调输入/输出处理,并促进用户友好的设计模式,以提高CLI可用性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

AI Hentai Generator
免费生成ai无尽的。

热门文章

热工具

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

Dreamweaver Mac版
视觉化网页开发工具

SecLists
SecLists是最终安全测试人员的伙伴。它是一个包含各种类型列表的集合,这些列表在安全评估过程中经常使用,都在一个地方。SecLists通过方便地提供安全测试人员可能需要的所有列表,帮助提高安全测试的效率和生产力。列表类型包括用户名、密码、URL、模糊测试有效载荷、敏感数据模式、Web shell等等。测试人员只需将此存储库拉到新的测试机上,他就可以访问到所需的每种类型的列表。

SublimeText3 Linux新版
SublimeText3 Linux最新版

EditPlus 中文破解版
体积小,语法高亮,不支持代码提示功能