搜索
首页后端开发Python教程构建您自己的 AI 部分 - 设置 AI/ML 开发环境

作者:特里克斯·赛勒斯

Waymap渗透测试工具:点击这里
TrixSec Github:点击这里
TrixSec Telegram:点击此处


开始使用人工智能和机器学习需要准备充分的开发环境。本文将指导您设置 AI/ML 之旅所需的工具和库,确保初学者顺利起步。我们还将为那些想要避免复杂的本地设置的人讨论 Google Colab 等在线平台。


AI/ML 开发的系统要求

在深入研究人工智能和机器学习项目之前,必须确保您的系统能够处理计算需求。虽然大多数基本任务可以在标准机器上运行,但更高级的项目(例如深度学习)可能需要更好的硬件。以下是根据项目复杂性划分的系统要求:


1.对于初学者:小项目和学习

  • 操作系统: Windows 10/11、macOS 或任何现代 Linux 发行版。
  • 处理器:双核CPU(Intel i5或AMD同等产品)。
  • RAM: 8 GB(最低);建议使用 16 GB,以实现更流畅的多任务处理。
  • 存储:
    • 20 GB 可用空间用于 Python、库和小型数据集。
    • 强烈建议使用 SSD,以获得更快的性能。
  • GPU(显卡): 不需要; CPU 足以满足基本的 ML 任务。
  • 互联网连接:下载库、数据集和使用云平台所需。

2.对于中间项目:更大的数据集

  • 处理器: 四核 CPU(Intel i7 或 AMD Ryzen 5 同等产品)。
  • RAM: 至少 16 GB;对于大型数据集,建议使用 32 GB。
  • 存储:
    • 50–100 GB 可用空间用于数据集和实验。
    • SSD 用于快速数据加载和操作。
  • GPU:
    • 具有至少 4 GB VRAM 的专用 GPU(例如 NVIDIA GTX 1650 或 AMD Radeon RX 550)。
    • 对于训练更大的模型或试验神经网络很有用。
  • 显示:双显示器可以提高模型调试和可视化过程中的工作效率。

3.对于高级项目:深度学习和大型模型

  • 处理器:高性能CPU(Intel i9或AMD Ryzen 7/9)。
  • RAM: 32–64 GB,用于处理内存密集型操作和大型数据集。
  • 存储:
    • 1 TB 或更多(强烈推荐 SSD)。
    • 数据集可能需要外部存储。
  • GPU:
    • 由于 CUDA 支持,NVIDIA GPU 是深度学习的首选。
    • 推荐:NVIDIA RTX 3060 (12 GB VRAM) 或更高版本(例如 RTX 3090、RTX 4090)。
    • 预算选项:NVIDIA RTX 2060 或 RTX 2070。
  • 冷却和电源:
    • 确保 GPU 适当冷却,尤其是在长时间训练期间。
    • 可靠的电源支持硬件。

4.云平台:如果您的系统达不到要求

如果您的系统不满足上述规格或者您需要更多计算能力,请考虑使用云平台:

  • Google Colab: 免费,可使用 GPU(可升级到 Colab Pro,以获得更长的运行时间和更好的 GPU)。
  • AWS EC2 或 SageMaker: 适用于大型 ML 项目的高性能实例。
  • Azure ML 或 GCP AI Platform: 适合企业级项目。
  • Kaggle Kernels: 免费用于较小数据集的实验。

基于用例的推荐设置

Use Case CPU RAM GPU Storage
Learning Basics Dual-Core i5 8–16 GB None/Integrated 20–50 GB
Intermediate ML Projects Quad-Core i7 16–32 GB GTX 1650 (4 GB) 50–100 GB
Deep Learning (Large Models) High-End i9/Ryzen 9 32–64 GB RTX 3060 (12 GB) 1 TB SSD
Cloud Platforms Not Required Locally N/A Cloud GPUs (e.g., T4, V100) N/A
用例 CPU 内存 GPU 存储 标题> 学习基础知识 双核 i5 8–16 GB 无/集成 20–50 GB 中级机器学习项目 四核 i7 16–32 GB GTX 1650(4 GB) 50–100 GB 深度学习(大型模型) 高端 i9/Ryzen 9 32–64 GB RTX 3060(12 GB) 1 TB SSD 云平台 本地不需要 不适用 云 GPU(例如 T4、V100) 不适用 表>

第 1 步:安装 Python

Python 因其简单性和庞大的库生态系统而成为 AI/ML 的首选语言。安装方法如下:

  1. 下载Python:

    • 访问 python.org 并下载最新的稳定版本(最好是 Python 3.9 或更高版本)。
  2. 安装Python:

    • 按照适合您的操作系统(Windows、macOS 或 Linux)的安装步骤进行操作。
    • 确保在安装过程中选中将 Python 添加到 PATH 选项。
  3. 验证安装:

    • 打开终端并输入:
     python --version
    

    您应该看到已安装的 Python 版本。


第 2 步:设置虚拟环境

为了保持项目井井有条并避免依赖冲突,最好使用虚拟环境。

  1. 创建虚拟环境:
   python -m venv env
  1. 激活虚拟环境:

    • 在 Windows 上:
     .\env\Scripts\activate
    
  • 在 macOS/Linux 上:

     source env/bin/activate
    
  1. 在环境中安装库: 激活后,任何安装的库都会被隔离到这个环境。

第 3 步:安装必要的库

Python 准备就绪后,安装以下对于 AI/ML 至关重要的库:

  1. NumPy: 用于数值计算。
   pip install numpy
  1. pandas: 用于数据操作和分析。
   pip install pandas
  1. Matplotlib 和 Seaborn: 用于数据可视化。
   pip install matplotlib seaborn
  1. scikit-learn: 用于基本的 ML 算法和工具。
   pip install scikit-learn
  1. TensorFlow/PyTorch: 用于深度学习。
   pip install tensorflow


   pip install torch torchvision
  1. Jupyter Notebook: 用于编码和可视化的交互式环境。
   pip install notebook

第 4 步:探索 Jupyter Notebook

Jupyter Notebooks 提供了一种交互式方式来编写和测试代码,使其非常适合学习 AI/ML。

  1. 启动 Jupyter Notebook:
   jupyter notebook

这将在您的浏览器中打开一个网络界面。

  1. 创建一个新笔记本:
    • 点击新建> Python 3 Notebook 并开始编码!

第 5 步:设置 Google Colab(可选)

对于那些不想设置本地环境的人来说,Google Colab 是一个不错的选择。它是免费的,并提供强大的 GPU 用于训练 AI 模型。

  1. 访问 Google Colab:

    • 前往 colab.research.google.com。
  2. 创建一个新笔记本:

    • 点击新建笔记本开始。
  3. 安装库(如果需要):
    NumPy 和 pandas 等库已预先安装,但您可以使用以下方式安装其他库:

 python --version

第 6 步:测试设置

为了确保一切正常,请在 Jupyter Notebook 或 Colab 中运行这个简单的测试:

   python -m venv env

输出应该是

Part Building Your Own AI - Setting Up the Environment for AI/ML Development


常见错误及解决方案

  1. 找不到库:

    • 确保您已在活动虚拟环境中安装该库。
  2. Python 无法识别:

    • 验证 Python 是否已添加到您的系统 PATH。
  3. Jupyter 笔记本问题:

    • 确保您已在正确的环境中安装 Jupyter。

~Trixsec

以上是构建您自己的 AI 部分 - 设置 AI/ML 开发环境的详细内容。更多信息请关注PHP中文网其他相关文章!

声明
本文内容由网友自发贡献,版权归原作者所有,本站不承担相应法律责任。如您发现有涉嫌抄袭侵权的内容,请联系admin@php.cn
为什么数组通常比存储数值数据列表更高?为什么数组通常比存储数值数据列表更高?May 05, 2025 am 12:15 AM

ArraySareAryallyMoremory-Moremory-forigationDataDatueTotheIrfixed-SizenatureAntatureAntatureAndirectMemoryAccess.1)arraysStorelelementsInAcontiguxufulock,ReducingOveringOverheadHeadefromenterSormetormetAdata.2)列表,通常

如何将Python列表转换为Python阵列?如何将Python列表转换为Python阵列?May 05, 2025 am 12:10 AM

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

您可以将不同的数据类型存储在同一Python列表中吗?举一个例子。您可以将不同的数据类型存储在同一Python列表中吗?举一个例子。May 05, 2025 am 12:10 AM

Python列表可以存储不同类型的数据。示例列表包含整数、字符串、浮点数、布尔值、嵌套列表和字典。列表的灵活性在数据处理和原型设计中很有价值,但需谨慎使用以确保代码的可读性和可维护性。

Python中的数组和列表之间有什么区别?Python中的数组和列表之间有什么区别?May 05, 2025 am 12:06 AM

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

通常使用哪种模块在Python中创建数组?通常使用哪种模块在Python中创建数组?May 05, 2025 am 12:02 AM

theSostCommonlyusedModuleForCreatingArraysInpyThonisnumpy.1)NumpyProvidEseffitedToolsForarrayOperations,Idealfornumericaldata.2)arraysCanbeCreatedDusingsnp.Array()for1dand2Structures.3)

您如何将元素附加到Python列表中?您如何将元素附加到Python列表中?May 04, 2025 am 12:17 AM

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

您如何创建Python列表?举一个例子。您如何创建Python列表?举一个例子。May 04, 2025 am 12:16 AM

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

讨论有效存储和数值数据的处理至关重要的实际用例。讨论有效存储和数值数据的处理至关重要的实际用例。May 04, 2025 am 12:11 AM

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。 1)在金融中,使用内存映射文件和NumPy库可显着提升数据处理速度。 2)科研领域,HDF5文件优化数据存储和检索。 3)医疗中,数据库优化技术如索引和分区提高数据查询性能。 4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显着提升系统性能和可扩展性。

See all articles

热AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover

AI Clothes Remover

用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool

Undress AI Tool

免费脱衣服图片

Clothoff.io

Clothoff.io

AI脱衣机

Video Face Swap

Video Face Swap

使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热工具

SublimeText3 Linux新版

SublimeText3 Linux新版

SublimeText3 Linux最新版

MinGW - 适用于 Windows 的极简 GNU

MinGW - 适用于 Windows 的极简 GNU

这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

适用于 Eclipse 的 SAP NetWeaver 服务器适配器

将Eclipse与SAP NetWeaver应用服务器集成。

mPDF

mPDF

mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

Dreamweaver CS6

Dreamweaver CS6

视觉化网页开发工具