如何从同一本地网络上的不同计算机/IP 访问 FastAPI 后端
从同一本地网络上的不同计算机访问 FastAPI 后端同一本地网络,必须确保以下几点:
1.主机标志配置:
运行 FastAPI 服务器时将主机标志设置为 0.0.0.0。这允许服务器侦听本地计算机上的所有可用 IP 地址。
2.防火墙调整:
确保防火墙配置为允许 FastAPI 应用程序指定端口上的入站连接。这可能需要为 Python 创建入站防火墙规则。
3. CORS 设置:
在 FastAPI 应用程序中启用并配置 CORS(跨源资源共享)。这允许前端和后端之间进行跨域请求,当使用不同的 IP 地址和端口号时可能会发生这种情况。
4. JavaScript 中的 HTTP 请求:
在前端 JavaScript 中,向 FastAPI 后端发出获取请求时使用正确的来源/URL。来源应与浏览器地址栏中输入的域名匹配。
FastAPI 的 CORS 设置示例:
origins = ['http://localhost:3000', 'http://192.168.x.x:3000'] app.add_middleware( CORSMiddleware, allow_origins=origins, allow_credentials=True, allow_methods=['*'], allow_headers=['*'], )
JavaScript 中的正确来源用法:
fetch('http://192.168.x.x:3000/people', {...
按照以下步骤,您可以从同一本地网络上的不同计算机成功访问 FastAPI 后端。
以上是如何从同一本地网络上的另一台计算机访问 FastAPI 后端?的详细内容。更多信息请关注PHP中文网其他相关文章!

ArraySareAryallyMoremory-Moremory-forigationDataDatueTotheIrfixed-SizenatureAntatureAntatureAndirectMemoryAccess.1)arraysStorelelementsInAcontiguxufulock,ReducingOveringOverheadHeadefromenterSormetormetAdata.2)列表,通常

ToconvertaPythonlisttoanarray,usethearraymodule:1)Importthearraymodule,2)Createalist,3)Usearray(typecode,list)toconvertit,specifyingthetypecodelike'i'forintegers.Thisconversionoptimizesmemoryusageforhomogeneousdata,enhancingperformanceinnumericalcomp

Python列表可以存储不同类型的数据。示例列表包含整数、字符串、浮点数、布尔值、嵌套列表和字典。列表的灵活性在数据处理和原型设计中很有价值,但需谨慎使用以确保代码的可读性和可维护性。

Pythondoesnothavebuilt-inarrays;usethearraymoduleformemory-efficienthomogeneousdatastorage,whilelistsareversatileformixeddatatypes.Arraysareefficientforlargedatasetsofthesametype,whereaslistsofferflexibilityandareeasiertouseformixedorsmallerdatasets.

theSostCommonlyusedModuleForCreatingArraysInpyThonisnumpy.1)NumpyProvidEseffitedToolsForarrayOperations,Idealfornumericaldata.2)arraysCanbeCreatedDusingsnp.Array()for1dand2Structures.3)

toAppendElementStoApythonList,usetheappend()方法forsingleements,Extend()formultiplelements,andinsert()forspecificpositions.1)useeAppend()foraddingoneOnelementAttheend.2)useextendTheEnd.2)useextendexendExendEnd(

TocreateaPythonlist,usesquarebrackets[]andseparateitemswithcommas.1)Listsaredynamicandcanholdmixeddatatypes.2)Useappend(),remove(),andslicingformanipulation.3)Listcomprehensionsareefficientforcreatinglists.4)Becautiouswithlistreferences;usecopy()orsl

金融、科研、医疗和AI等领域中,高效存储和处理数值数据至关重要。 1)在金融中,使用内存映射文件和NumPy库可显着提升数据处理速度。 2)科研领域,HDF5文件优化数据存储和检索。 3)医疗中,数据库优化技术如索引和分区提高数据查询性能。 4)AI中,数据分片和分布式训练加速模型训练。通过选择适当的工具和技术,并权衡存储与处理速度之间的trade-off,可以显着提升系统性能和可扩展性。


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

MinGW - 适用于 Windows 的极简 GNU
这个项目正在迁移到osdn.net/projects/mingw的过程中,你可以继续在那里关注我们。MinGW:GNU编译器集合(GCC)的本地Windows移植版本,可自由分发的导入库和用于构建本地Windows应用程序的头文件;包括对MSVC运行时的扩展,以支持C99功能。MinGW的所有软件都可以在64位Windows平台上运行。

记事本++7.3.1
好用且免费的代码编辑器

Dreamweaver Mac版
视觉化网页开发工具

SublimeText3 Mac版
神级代码编辑软件(SublimeText3)

SublimeText3 英文版
推荐:为Win版本,支持代码提示!