译者 | 李睿
审校 | 重楼
人工智能(AI)和机器学习(ML)模型如今变得越来越复杂,这些模型产生的输出是黑盒——无法向利益相关方解释。可解释性人工智能(XAI)致力于通过让利益相关方理解这些模型的工作方式来解决这一问题,确保他们理解这些模型实际上是如何做出决策的,并确保人工智能系统中的透明度、信任度和问责制来解决这个问题。本文探讨了各种可解释性人工智能(XAI)技术,以阐明它们的基本原理。
可解释性人工智能至关重要的几个原因
- 信任度和透明度:为了让人工智能系统被广泛接受和信任,用户需要了解决策是如何做出的。
- 法规遵从性:欧盟的《通用数据保护条例》(GDPR)等法律要求对影响个人的自动化决策做出解释。
- 模型调试和改进:深入了解模型决策可以帮助开发人员识别和纠正偏差或不准确之处。
可解释性人工智能的核心技术
智能工人的可解释性是指其技术模型可分为模型不可知方法和模型特定方法,每种方法都适用于不同类型的智能工人模型和应用。
模型不可知方法
(1)局部可解释模型不可知论解释(LIME)
局部可解释模型不可知识解释(LIME)是一项创新性的技术,旨在使人类可以理解复杂机器学习模型的预测。从本质上讲,LIME的好处在于它的简单性和解释任何分类器或回归器行为的能力,而不管其复杂性如何。 LIME通过在输入数据的附近进行采样,然后使用简单模型(如线性回归模型)来近似原始复杂模型的预测。简单模型会学习如何解释复杂模型在特定输入上的预测,以便可以理解复杂模型的决策过程。这样,即使复杂模型是黑盒子,我们也可以通过简单模型的解释来
LIME通 过使用可解释的模型在局部近似来阐明任何分类器或回归器的预测。关键思想是扰动输入数据并观察预测如何变化,这有助于识别显著影响预测的特征。
在数学上,对于给定的实例\(x\)和模型\(f\),LIME生成一个新的样本数据集,并使用\(f\)对它们进行标记。然后,它学习一个基于\(f\)的局部忠实于(f)的简单模型(如线性模型),最小化以下目标:
\[ \xi(x) = \underset{g \in G}{\text{argmin}} \; L(f, g, \pi_x) + \Omega(g) \]
其中\(L\)是衡量\(g\)在\(x\)周围近似\(f\)时的不忠实程度,\(\pi_x\)是是定义\(x\)周围局部邻域的邻近度度量,并且\(\Omega\)惩罚\(g\)的复杂性。
(2)Shapley可加性解释(SHAP)
Shapley可加性解释(SHAP)通过为特定预测的每个特征分配重要值来帮助人们理解机器学习模型的输出。想象一下,人们正试图根据房子的大小、年限和位置等特征来预测房子的价格。某些特征可能会提高预期价格,而其他特征可能会降低预期价格。相对于基线预测(数据集的平均预测),SHAP值有助于人们准确量化每个特征对最终预测的贡献。
特征\(i\)的SHAP值定义为:
\[ \phi_i = \sum_{S \subseteq F \setminus \{i\}} \frac{|S|!(|F| - |S| - 1)!}{|F|!} [f_x(S \cup \{i\}) - f_x(S)] \]
其中,\F\)是所有特征的集合,\S\)是不包括\(i\)的特征的子集,\(f_x(S)\)是特征集\S\)的预测,总和是所有可能的特征子集。该公式确保每个特征的贡献根据其对预测的影响进行公平分配。
特定于模型的方法
(1)神经网络中的注意机制
神经网络中的注意机制强调输入数据中与做出预测最相关的部分。在序列到序列模型的场景中,目标时间步长\(t\)和源时间步长\(j\)的注意力权重\(\alpha_{tj}\)计算为:
\[ \alpha_{tj} = \frac{\exp(e_{tj})}{\sum_{k=1}^{T_s} \exp(e_{tk})} \]
其中\(e_{tj}\)是一个评分函数,用于评估位置\(j\)的输入和位置\(t\)的输出之间的对齐情况,\(T_s\)是输入序列的长度。这种机制允许模型关注输入数据的相关部分,从而提高可解释性。
(2)决策树的可视化
决策树通过将决策表示为从输入特征派生的一系列规则来提供固有的可解释性。决策树的结构可以实现可视化,节点表示基于特征的决策,叶子表示结果。这种可视化表示可以直接跟踪输入特征是如何导致特定预测的。
(3)实际实施和道德考虑
实现可解释的人工智能需要仔细考虑模型类型、应用程序要求和解释的目标受众。在模型性能和可解释性之间进行权衡也很重要。从道德上来说,确保人工智能系统的公平性、问责制和透明度至关重要。可解释性人工智能的未来方向包括标准化解释框架和继续研究更有效的解释方法。
结论
可解释性人工智能对于解释复杂的AI/ML模型,提供信任和确保其应用程序中的问责制至关重要。它利用了LIME、SHAP、注意力机制和决策树可视化等技术。随着该领域的发展,更复杂和标准化的可解释性人工智能方法的开发对于解决软件开发和法规遵从性的不断发展的需求将是至关重要的。
原文标题:Explainable AI: Interpreting Complex AI/ML Model,作者:Rajiv Avacharmal
以上是可解释性人工智能:解释复杂的AI/ML模型的详细内容。更多信息请关注PHP中文网其他相关文章!

动荡游戏:与AI代理商的游戏开发彻底改变 Roupheaval是一家游戏开发工作室,由暴风雪和黑曜石等行业巨头的退伍军人组成,有望用其创新的AI驱动的Platfor革新游戏创作

Uber的Robotaxi策略:自动驾驶汽车的骑车生态系统 在最近的Curbivore会议上,Uber的Richard Willder推出了他们成为Robotaxi提供商的乘车平台的策略。 利用他们在

事实证明,视频游戏是尖端AI研究的宝贵测试场所,尤其是在自主代理和现实世界机器人的开发中,甚至有可能促进人工通用智能(AGI)的追求。 一个

不断发展的风险投资格局的影响在媒体,财务报告和日常对话中显而易见。 但是,对投资者,初创企业和资金的具体后果经常被忽略。 风险资本3.0:范式

Adobe Max London 2025对Creative Cloud和Firefly进行了重大更新,反映了向可访问性和生成AI的战略转变。 该分析结合了事件前简报中的见解,并融合了Adobe Leadership。 (注意:Adob

Meta的Llamacon公告展示了一项综合的AI策略,旨在直接与OpenAI等封闭的AI系统竞争,同时为其开源模型创建了新的收入流。 这个多方面的方法目标bo

人工智能领域对这一论断存在严重分歧。一些人坚称,是时候揭露“皇帝的新衣”了,而另一些人则强烈反对人工智能仅仅是普通技术的观点。 让我们来探讨一下。 对这一创新性人工智能突破的分析,是我持续撰写的福布斯专栏文章的一部分,该专栏涵盖人工智能领域的最新进展,包括识别和解释各种有影响力的人工智能复杂性(请点击此处查看链接)。 人工智能作为普通技术 首先,需要一些基本知识来为这场重要的讨论奠定基础。 目前有大量的研究致力于进一步发展人工智能。总目标是实现人工通用智能(AGI)甚至可能实现人工超级智能(AS

公司AI模型的有效性现在是一个关键的性能指标。自AI BOOM以来,从编写生日邀请到编写软件代码的所有事物都将生成AI使用。 这导致了语言mod的扩散


热AI工具

Undresser.AI Undress
人工智能驱动的应用程序,用于创建逼真的裸体照片

AI Clothes Remover
用于从照片中去除衣服的在线人工智能工具。

Undress AI Tool
免费脱衣服图片

Clothoff.io
AI脱衣机

Video Face Swap
使用我们完全免费的人工智能换脸工具轻松在任何视频中换脸!

热门文章

热工具

mPDF
mPDF是一个PHP库,可以从UTF-8编码的HTML生成PDF文件。原作者Ian Back编写mPDF以从他的网站上“即时”输出PDF文件,并处理不同的语言。与原始脚本如HTML2FPDF相比,它的速度较慢,并且在使用Unicode字体时生成的文件较大,但支持CSS样式等,并进行了大量增强。支持几乎所有语言,包括RTL(阿拉伯语和希伯来语)和CJK(中日韩)。支持嵌套的块级元素(如P、DIV),

安全考试浏览器
Safe Exam Browser是一个安全的浏览器环境,用于安全地进行在线考试。该软件将任何计算机变成一个安全的工作站。它控制对任何实用工具的访问,并防止学生使用未经授权的资源。

螳螂BT
Mantis是一个易于部署的基于Web的缺陷跟踪工具,用于帮助产品缺陷跟踪。它需要PHP、MySQL和一个Web服务器。请查看我们的演示和托管服务。

适用于 Eclipse 的 SAP NetWeaver 服务器适配器
将Eclipse与SAP NetWeaver应用服务器集成。

VSCode Windows 64位 下载
微软推出的免费、功能强大的一款IDE编辑器