搜尋
首頁科技週邊人工智慧手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

本文介紹了實現一個稀疏混合專家語言模型(MoE)的方法,詳細解釋了模型的實施過程,包括採用稀疏混合專家取代傳統的前饋神經網路,實現top-k 門控和雜訊的top-k 門控,以及採用Kaiming He 初始化技術。作者也說明了從 makemore 架構保持不變的元素,例如資料集處理、分詞預處理和語言建模任務。最後還提供了一個 GitHub 倉庫鏈接,用於實現模型的整個過程,是一本不可多得的實戰教科書。

內容簡介

混合專家模型(MoE)在發布後開始受到廣泛關注,特別是在稀疏化的混合專家語言模型中。雖然大部分的組件與傳統transformers相似,但稀疏混合專家語言模型的訓練穩定性存在一些問題,儘管看起來相對簡單。

這種可設定的小規模稀疏 MoE 實作方法在Hugging Face的一篇部落格中被介紹了出來,這對於想要進行新方法快速試驗的研究者來說可能非常有幫助。部落格還提供了基於PyTorch的詳細程式碼,可以在此連結找到:https://github.com/AviSoori1x/makeMoE/tree/main。這樣的小規模實現有助於研究者們在這個領域進行快速試驗。

本站對此進行了整理,以颯讀者。

本文在makemore 架構的基礎上,進行了幾處變更:

  • 使用稀疏混合專家取代單獨的前饋神經網路

  • Top-k 閘控和雜訊的Top-k 閘控;

  • 參數初始化使用了Kaiming He 初始化方法,但本文重點是可自訂初始化方法,包括選擇Xavier/Glorot 等初始化方法。

同時,以下模組與makemore 保持一致:

  • #資料集、預處理(分詞)部分以及Andrej 最初選擇的語言建模任務- 產生莎士比亞文風的文本內容

  • Casusal 自註意力機制

  • 訓練循環

手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

推理邏輯

接下來逐步介紹實作方案,先從注意力機制開始。

因果縮放點積注意力機制

#下面這段程式碼展示了自註意力機制的基本概念,並且著重於使用經典的縮放點積自註意力(scaled dot product self-attention.)實現。在這個自註意力變體機制中,查詢矩陣、鍵矩陣和值矩陣都來自相同的輸入序列。同時為了確保自回歸語言生成過程的完整性,特別是在純解碼器模型中,使用了一種遮罩機制。

這種遮罩機制非常關鍵,因為它可以掩蓋當前 token 所處位置之後的任何訊息,從而引導模型只專注於序列的前面部分。這種了遮擋 token 後面內容的注意力稱為因果自註意力。值得注意的是,稀疏混合專家模型並不局限於僅限解碼器的 Transformer 架構。事實上,這一領域的許多重要的成果都是圍繞著 T5 架構展開的,T5 架構也包含了 Transformer 模型中的編碼器和解碼器元件。

#This code is borrowed from Andrej Karpathy's makemore repository linked in the repo.The self attention layers in Sparse mixture of experts models are the same asin regular transformer modelstorch.manual_seed(1337)B,T,C = 4,8,32 # batch, time, channelsx = torch.randn(B,T,C)# let's see a single Head perform self-attentionhead_size = 16key = nn.Linear(C, head_size, bias=False)query = nn.Linear(C, head_size, bias=False)value = nn.Linear(C, head_size, bias=False)k = key(x) # (B, T, 16)q = query(x) # (B, T, 16)wei =q @ k.transpose(-2, -1) # (B, T, 16) @ (B, 16, T) ---> (B, T, T)tril = torch.tril(torch.ones(T, T))#wei = torch.zeros((T,T))wei = wei.masked_fill(tril == 0, float('-inf'))wei = F.softmax(wei, dim=-1) #B,T,Tv = value(x) #B,T,Hout = wei @ v # (B,T,T) @ (B,T,H) -> (B,T,H)out.shape

###
torch.Size([4, 8, 16])
######然後,因果自註意力和多頭因果自註意力的程式碼可整理如下。多頭自註意力並行應用多個注意力頭,每個注意力頭單獨關注通道的一個部分(嵌入維度)。多頭自註意力從本質上改善了學習過程,並由於其固有的並行能力提高了模型訓練的效率。下面這段程式碼使用了 dropout 來進行正規化,來防止過度擬合。 ######
#Causal scaled dot product self-Attention Headn_embd = 64n_head = 4n_layer = 4head_size = 16dropout = 0.1class Head(nn.Module):""" one head of self-attention """def __init__(self, head_size):super().__init__()self.key = nn.Linear(n_embd, head_size, bias=False)self.query = nn.Linear(n_embd, head_size, bias=False)self.value = nn.Linear(n_embd, head_size, bias=False)self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))self.dropout = nn.Dropout(dropout)def forward(self, x):B,T,C = x.shapek = self.key(x) # (B,T,C)q = self.query(x) # (B,T,C)# compute attention scores ("affinities")wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)wei = F.softmax(wei, dim=-1) # (B, T, T)wei = self.dropout(wei)# perform the weighted aggregation of the valuesv = self.value(x) # (B,T,C)out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)        return out
######多頭自註意力的實作方式如下:######
#Multi-Headed Self Attentionclass MultiHeadAttention(nn.Module):""" multiple heads of self-attention in parallel """def __init__(self, num_heads, head_size):super().__init__()self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])self.proj = nn.Linear(n_embd, n_embd)self.dropout = nn.Dropout(dropout)def forward(self, x):out = torch.cat([h(x) for h in self.heads], dim=-1)out = self.dropout(self.proj(out))        return out
#########建立一個專家模組######## ####即一個簡單的多層感知器#########在稀疏混合專家架構中,每個transformer 區塊內的自註意力機制保持不變。不過,每個區塊的結構發生了巨大的變化:標準的前饋###神經網路###被多個稀疏活化的前饋網路(即專家網路)所取代。所謂“稀疏激活”,是指序列中的每個 token 只被分配給有限數量的專家(通常是一個或兩個)。 ###

这有助于提高训练和推理速度,因为每次前向传递都会激活少数专家。不过,所有专家都必须存在 GPU 内存中,因此当参数总数达到数千亿甚至数万亿时,就会产生部署方面的问题。

手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

#Expert moduleclass Expert(nn.Module):""" An MLP is a simple linear layer followed by a non-linearity i.e. each Expert """def __init__(self, n_embd):super().__init__()self.net = nn.Sequential(nn.Linear(n_embd, 4 * n_embd),nn.ReLU(),nn.Linear(4 * n_embd, n_embd),nn.Dropout(dropout),)def forward(self, x):        return self.net(x)

Top-k 门控的一个例子

手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

门控网络,也称为路由,确定哪个专家网络接收来自多头注意力的 token 的输出。举个例子解释路由的机制,假设有 4 个专家,token 需要被路由到前 2 个专家中。首先需要通过线性层将 token 输入到门控网络中。该层将对应于(Batch size,Tokens,n_embed)的输入张量从(2,4,32)维度,投影到对应于(Batch size、Tokens,num_expert)的新形状:(2、4,4)。其中 n_embed 是输入的通道维度,num_experts 是专家网络的计数。

接下来,沿最后一个维度,找出最大的前两个值及其相应的索引。

#Understanding how gating worksnum_experts = 4top_k=2n_embed=32#Example multi-head attention output for a simple illustrative example, consider n_embed=32, context_length=4 and batch_size=2mh_output = torch.randn(2, 4, n_embed)topkgate_linear = nn.Linear(n_embed, num_experts) # nn.Linear(32, 4)logits = topkgate_linear(mh_output)top_k_logits, top_k_indices = logits.topk(top_k, dim=-1)# Get top-k expertstop_k_logits, top_k_indices
#output:(tensor([[[ 0.0246, -0.0190],[ 0.1991,0.1513],[ 0.9749,0.7185],[ 0.4406, -0.8357]],  [[ 0.6206, -0.0503],[ 0.8635,0.3784],[ 0.6828,0.5972],[ 0.4743,0.3420]]], grad_fn=<TopkBackward0>), tensor([[[2, 3],[2, 1],[3, 1],[2, 1]],  [[0, 2], [0, 3], [3, 2],         [3, 0]]]))

通过仅保留沿最后一个维度进行比较的前 k 大的值,来获得稀疏门控的输出。用负无穷值填充其余部分,在使用 softmax 激活函数。负无穷会被映射至零,而最大的前两个值会更加突出,且和为 1。要求和为 1 是为了对专家输出的内容进行加权。

zeros = torch.full_like(logits, float(&#39;-inf&#39;)) #full_like clones a tensor and fills it with a specified value (like infinity) for masking or calculations.sparse_logits = zeros.scatter(-1, top_k_indices, top_k_logits)sparse_logits
#outputtensor([[[ -inf,-inf,0.0246, -0.0190], [ -inf,0.1513,0.1991,-inf], [ -inf,0.7185,-inf,0.9749], [ -inf, -0.8357,0.4406,-inf]],[[ 0.6206,-inf, -0.0503,-inf], [ 0.8635,-inf,-inf,0.3784], [ -inf,-inf,0.5972,0.6828], [ 0.3420,-inf,-inf,0.4743]]], grad_fn=<ScatterBackward0>)
gating_output= F.softmax(sparse_logits, dim=-1)gating_output
#ouputtensor([[[0.0000, 0.0000, 0.5109, 0.4891], [0.0000, 0.4881, 0.5119, 0.0000], [0.0000, 0.4362, 0.0000, 0.5638], [0.0000, 0.2182, 0.7818, 0.0000]],[[0.6617, 0.0000, 0.3383, 0.0000], [0.6190, 0.0000, 0.0000, 0.3810], [0.0000, 0.0000, 0.4786, 0.5214],         [0.4670, 0.0000, 0.0000, 0.5330]]], grad_fn=<SoftmaxBackward0>)

使用有噪声的 top-k 门控以实现负载平衡

# First define the top k router moduleclass TopkRouter(nn.Module):def __init__(self, n_embed, num_experts, top_k):super(TopkRouter, self).__init__()self.top_k = top_kself.linear =nn.Linear(n_embed, num_experts)   def forward(self, mh_ouput):# mh_ouput is the output tensor from multihead self attention blocklogits = self.linear(mh_output)top_k_logits, indices = logits.topk(self.top_k, dim=-1)zeros = torch.full_like(logits, float(&#39;-inf&#39;))sparse_logits = zeros.scatter(-1, indices, top_k_logits)router_output = F.softmax(sparse_logits, dim=-1)        return router_output, indices

接下来使用下面这段代码来测试程序:

#Testing this out:num_experts = 4top_k = 2n_embd = 32mh_output = torch.randn(2, 4, n_embd)# Example inputtop_k_gate = TopkRouter(n_embd, num_experts, top_k)gating_output, indices = top_k_gate(mh_output)gating_output.shape, gating_output, indices#And it works!!
#output(torch.Size([2, 4, 4]), tensor([[[0.5284, 0.0000, 0.4716, 0.0000],[0.0000, 0.4592, 0.0000, 0.5408],[0.0000, 0.3529, 0.0000, 0.6471],[0.3948, 0.0000, 0.0000, 0.6052]],  [[0.0000, 0.5950, 0.4050, 0.0000],         [0.4456, 0.0000, 0.5544, 0.0000], [0.7208, 0.0000, 0.0000, 0.2792], [0.0000, 0.0000, 0.5659, 0.4341]]], grad_fn=<SoftmaxBackward0>), tensor([[[0, 2],[3, 1],[3, 1],[3, 0]],  [[1, 2], [2, 0], [0, 3],         [2, 3]]]))

尽管最近发布的 mixtral 的论文没有提到这一点,但本文的作者相信有噪声的 Top-k 门控机制是训练 MoE 模型的一个重要工具。从本质上讲,不会希望所有的 token 都发送给同一组「受欢迎」的专家网络。人们需要的是能在开发和探索之间取得良好平衡。为此,为了负载平衡,从门控的线性层向 logits 激活函数添加标准正态噪声是有帮助的,这使训练更有效率。

手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

#Changing the above to accomodate noisy top-k gatingclass NoisyTopkRouter(nn.Module):def __init__(self, n_embed, num_experts, top_k):super(NoisyTopkRouter, self).__init__()self.top_k = top_k#layer for router logitsself.topkroute_linear = nn.Linear(n_embed, num_experts)self.noise_linear =nn.Linear(n_embed, num_experts)def forward(self, mh_output):# mh_ouput is the output tensor from multihead self attention blocklogits = self.topkroute_linear(mh_output)#Noise logitsnoise_logits = self.noise_linear(mh_output)#Adding scaled unit gaussian noise to the logitsnoise = torch.randn_like(logits)*F.softplus(noise_logits)noisy_logits = logits + noisetop_k_logits, indices = noisy_logits.topk(self.top_k, dim=-1)zeros = torch.full_like(noisy_logits, float(&#39;-inf&#39;))sparse_logits = zeros.scatter(-1, indices, top_k_logits)router_output = F.softmax(sparse_logits, dim=-1)        return router_output, indices

再次尝试代码:

#Testing this out, again:num_experts = 8top_k = 2n_embd = 16mh_output = torch.randn(2, 4, n_embd)# Example inputnoisy_top_k_gate = NoisyTopkRouter(n_embd, num_experts, top_k)gating_output, indices = noisy_top_k_gate(mh_output)gating_output.shape, gating_output, indices#It works!!
#output(torch.Size([2, 4, 8]), tensor([[[0.4181, 0.0000, 0.5819, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],[0.4693, 0.5307, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.4985, 0.5015, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],[0.0000, 0.0000, 0.0000, 0.2641, 0.0000, 0.7359, 0.0000, 0.0000]],  [[0.0000, 0.0000, 0.0000, 0.6301, 0.0000, 0.3699, 0.0000, 0.0000], [0.0000, 0.0000, 0.0000, 0.4766, 0.0000, 0.0000, 0.0000, 0.5234], [0.0000, 0.0000, 0.0000, 0.6815, 0.0000, 0.0000, 0.3185, 0.0000], [0.4482, 0.5518, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]],        grad_fn=<SoftmaxBackward0>), tensor([[[2, 0],[1, 0],[2, 1],[5, 3]],  [[3, 5], [7, 3], [3, 6],           [1, 0]]]))

创建稀疏化的混合专家模块

在获得门控网络的输出结果之后,对于给定的 token,将前 k 个值选择性地与来自相应的前 k 个专家的输出相乘。这种选择性乘法的结果是一个加权和,该加权和构成 SparseMoe 模块的输出。这个过程的关键和难点是避免不必要的乘法运算,只为前 k 名专家进行正向转播。为每个专家执行前向传播将破坏使用稀疏 MoE 的目的,因为这个过程将不再是稀疏的。

class SparseMoE(nn.Module):def __init__(self, n_embed, num_experts, top_k):super(SparseMoE, self).__init__()self.router = NoisyTopkRouter(n_embed, num_experts, top_k)self.experts = nn.ModuleList([Expert(n_embed) for _ in range(num_experts)])self.top_k = top_kdef forward(self, x):gating_output, indices = self.router(x)final_output = torch.zeros_like(x)# Reshape inputs for batch processingflat_x = x.view(-1, x.size(-1))flat_gating_output = gating_output.view(-1, gating_output.size(-1))# Process each expert in parallelfor i, expert in enumerate(self.experts):# Create a mask for the inputs where the current expert is in top-kexpert_mask = (indices == i).any(dim=-1)flat_mask = expert_mask.view(-1)if flat_mask.any():expert_input = flat_x[flat_mask]expert_output = expert(expert_input)# Extract and apply gating scoresgating_scores = flat_gating_output[flat_mask, i].unsqueeze(1)weighted_output = expert_output * gating_scores# Update final output additively by indexing and addingfinal_output[expert_mask] += weighted_output.squeeze(1)        return final_output

运行以下代码来用样本测试上述实现,可以看到确实如此!

import torchimport torch.nn as nn#Let&#39;s test this outnum_experts = 8top_k = 2n_embd = 16dropout=0.1mh_output = torch.randn(4, 8, n_embd)# Example multi-head attention outputsparse_moe = SparseMoE(n_embd, num_experts, top_k)final_output = sparse_moe(mh_output)print("Shape of the final output:", final_output.shape)
Shape of the final output: torch.Size([4, 8, 16])

需要强调的是,如上代码所示,从路由 / 门控网络输出的 top_k 本身也很重要。索引确定了被激活的专家是哪些, 对应的值又决定了权重大小。下图进一步解释了加权求和的概念。

手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

模块整合

将多头自注意力和稀疏混合专家相结合,形成稀疏混合专家 transformer 块。就像在 vanilla transformer 块中一样,也要使用残差以确保训练稳定,并避免梯度消失等问题。此外,要采用层归一化来进一步稳定学习过程。

#Create a self attention + mixture of experts block, that may be repeated several number of timesclass Block(nn.Module):""" Mixture of Experts Transformer block: communication followed by computation (multi-head self attention + SparseMoE) """def __init__(self, n_embed, n_head, num_experts, top_k):# n_embed: embedding dimension, n_head: the number of heads we&#39;d likesuper().__init__()head_size = n_embed // n_headself.sa = MultiHeadAttention(n_head, head_size)self.smoe = SparseMoE(n_embed, num_experts, top_k)self.ln1 = nn.LayerNorm(n_embed)self.ln2 = nn.LayerNorm(n_embed)def forward(self, x):x = x + self.sa(self.ln1(x))x = x + self.smoe(self.ln2(x))        return x

最后,将所有内容整合在一起,形成稀疏混合专家语言模型。

class SparseMoELanguageModel(nn.Module):def __init__(self):super().__init__()# each token directly reads off the logits for the next token from a lookup table      self.token_embedding_table = nn.Embedding(vocab_size, n_embed)        self.position_embedding_table = nn.Embedding(block_size, n_embed)self.blocks = nn.Sequential(*[Block(n_embed, n_head=n_head, num_experts=num_experts,top_k=top_k) for _ in range(n_layer)])self.ln_f = nn.LayerNorm(n_embed) # final layer normself.lm_head = nn.Linear(n_embed, vocab_size)def forward(self, idx, targets=None):B, T = idx.shape# idx and targets are both (B,T) tensor of integerstok_emb = self.token_embedding_table(idx) # (B,T,C)pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)x = tok_emb + pos_emb # (B,T,C)x = self.blocks(x) # (B,T,C)x = self.ln_f(x) # (B,T,C)logits = self.lm_head(x) # (B,T,vocab_size)if targets is None:loss = Noneelse:B, T, C = logits.shapelogits = logits.view(B*T, C)targets = targets.view(B*T)loss = F.cross_entropy(logits, targets)return logits, lossdef generate(self, idx, max_new_tokens):# idx is (B, T) array of indices in the current contextfor _ in range(max_new_tokens):# crop idx to the last block_size tokensidx_cond = idx[:, -block_size:]# get the predictionslogits, loss = self(idx_cond)# focus only on the last time steplogits = logits[:, -1, :] # becomes (B, C)# apply softmax to get probabilitiesprobs = F.softmax(logits, dim=-1) # (B, C)# sample from the distributionidx_next = torch.multinomial(probs, num_samples=1) # (B, 1)# append sampled index to the running sequenceidx = torch.cat((idx, idx_next), dim=1) # (B, T+1)        return idx

参数初始化对于深度神经网络的高效训练非常重要。由于专家中存在 ReLU 激活,因此这里使用了 Kaiming He 初始化。也可以尝试在 transformer 中更常用的 Glorot 初始化。杰里米 - 霍华德(Jeremy Howard)的《Fastai》第 2 部分有一个从头开始实现这些功能的精彩讲座:https://course.fast.ai/Lessons/lesson17.html

Glorot 参数初始化通常被用于 transformer 模型,因此这是一个可能提高模型性能的方法。

def kaiming_init_weights(m):if isinstance (m, (nn.Linear)): init.kaiming_normal_(m.weight)model = SparseMoELanguageModel()model.apply(kaiming_init_weights)

本文作者使用 mlflow 跟踪并记录重要指标和训练超参数。

#Using MLFlowm = model.to(device)# print the number of parameters in the modelprint(sum(p.numel() for p in m.parameters())/1e6, &#39;M parameters&#39;)# create a PyTorch optimizeroptimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)#mlflow.set_experiment("makeMoE")with mlflow.start_run():#If you use mlflow.autolog() this will be automatically logged. I chose to explicitly log here for completenessparams = {"batch_size": batch_size , "block_size" : block_size, "max_iters": max_iters, "eval_interval": eval_interval,"learning_rate": learning_rate, "device": device, "eval_iters": eval_iters, "dropout" : dropout, "num_experts": num_experts, "top_k": top_k }mlflow.log_params(params)for iter in range(max_iters):# every once in a while evaluate the loss on train and val setsif iter % eval_interval == 0 or iter == max_iters - 1:losses = estimate_loss()print(f"step {iter}: train loss {losses[&#39;train&#39;]:.4f}, val loss {losses[&#39;val&#39;]:.4f}")metrics = {"train_loss": losses[&#39;train&#39;], "val_loss": losses[&#39;val&#39;]}mlflow.log_metrics(metrics, step=iter)# sample a batch of dataxb, yb = get_batch(&#39;train&#39;)# evaluate the losslogits, loss = model(xb, yb)optimizer.zero_grad(set_to_none=True)loss.backward()optimizer.step()
8.996545 M parametersstep 0: train loss 5.3223, val loss 5.3166step 100: train loss 2.7351, val loss 2.7429step 200: train loss 2.5125, val loss 2.5233...step 4999: train loss 1.5712, val loss 1.7508

记录训练和验证损失可以很好地指示训练的进展情况。该图显示,可能应该在 4500 次时停止(当验证损失稍微增加时)

手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)

接下来可以使用这个模型逐字符自回归地生成文本。

# generate from the model. Not great. Not too bad eithercontext = torch.zeros((1, 1), dtype=torch.long, device=device)print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))
DUKE VINCENVENTIO:If it ever fecond he town sue kigh now,That thou wold&#39;st is steen &#39;t.SIMNA:Angent her; no, my a born Yorthort,Romeoos soun and lawf to your sawe with ch a woft ttastly defy,To declay the soul art; and meart smad.CORPIOLLANUS:Which I cannot shall do from by born und ot cold warrike,What king we best anone wrave&#39;s going of heard and goodThus playvage; you have wold the grace....

本文参考内容:

在实施过程中,作者大量参考了以下出版物:

  • 混合专家模型:https://arxiv.org/pdf/2401.04088.pdf

  • 超大型神经网络:稀疏门控混合专家层:https://arxiv.org/pdf/1701.06538.pdf

  • 来自 Andrej Karpathy 的原始 makemore 实现:https://github.com/karpathy/makemore

还可以尝试以下几种方法,来提高模型性能:

  • 提高混合专家模块的效率;

  • 尝试不同的神经网络初始化策略;

  • 从字符级到子词级的分词;

  • 对专家数量和 k 的取值(每个 token 激活的专家数量)进行贝叶斯超参数搜索。这可以归类为神经架构搜索。

  • 优化专家能力。

以上是手把手教你,從零開始實作一個稀疏混合專家架構語言模型(MoE)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

陳述
本文轉載於:机器之心。如有侵權,請聯絡admin@php.cn刪除
火箭發射模擬和分析使用Rocketpy -Analytics Vidhya火箭發射模擬和分析使用Rocketpy -Analytics VidhyaApr 19, 2025 am 11:12 AM

模擬火箭發射的火箭發射:綜合指南 本文指導您使用強大的Python庫Rocketpy模擬高功率火箭發射。 我們將介紹從定義火箭組件到分析模擬的所有內容

5個免費數據分析課程 - 分析Vidhya5個免費數據分析課程 - 分析VidhyaApr 19, 2025 am 11:11 AM

踏上數據驅動的職業旅程而不會破壞銀行! 本文重點介紹了五個非凡的免費數據分析課程,非常適合兩位經驗豐富的專業人士,他們尋求擴大技能和好奇的新手渴望探索T

如何使用OpenAgi構建自主AI代理? - 分析Vidhya如何使用OpenAgi構建自主AI代理? - 分析VidhyaApr 19, 2025 am 11:10 AM

利用AI代理商的力量與OpenAgi:綜合指南 想像一下不懈的助手,總是可以簡化您的任務並提供有見地的建議。這就是AI代理商的承諾,Openagi賦予您建造它們

GPT-4O MINI:OpenAI的最新模型如何堆疊?GPT-4O MINI:OpenAI的最新模型如何堆疊?Apr 19, 2025 am 11:09 AM

Openai的最新產品GPT-4O Mini標誌著朝著負擔得起且可訪問的高級AI邁出的重要一步。 這種小型語言模型(SLM)直接挑戰諸如Llama 3和Gemma 2之類的競爭對手,具有低潛伏期,成本效益和A

從技術創新者到醫療保健先驅:Geetha Manjunath博士的AI故事從技術創新者到醫療保健先驅:Geetha Manjunath博士的AI故事Apr 19, 2025 am 11:02 AM

Niramai Analytix的創始人兼首席執行官Geetha Manjunath博士的這一集由“領導數據”的劇集。 Manjunath博士擁有AI和Healthcare的25年以上的經驗,並獲得了印度科學學院的博士學位和MBA來回。

用Ollama -Analytics Vidhya簡化本地LLM部署用Ollama -Analytics Vidhya簡化本地LLM部署Apr 19, 2025 am 11:01 AM

利用Ollama本地開源LLMS的力量:綜合指南 運行大型語言模型(LLMS)本地提供無與倫比的控制和透明度,但是設置環境可能令人生畏。 Ollama簡化了這個過程

如何使用Monsterapi微調大語言模型如何使用Monsterapi微調大語言模型Apr 19, 2025 am 10:49 AM

利用微調LLM的功能與Monsterapi:綜合指南 想像一個虛擬助手完美理解並預測您的需求。 由於大型語言模型(LLMS)的進步,這已成為現實。 但是,

5統計測試每個數據科學家都應該知道-Analytics Vidhya5統計測試每個數據科學家都應該知道-Analytics VidhyaApr 19, 2025 am 10:27 AM

數據科學的基本統計測試:綜合指南 從數據中解鎖有價值的見解至關重要。 掌握統計測試對於實現這一目標至關重要。這些測試使數據科學家能夠嚴格瓦爾

See all articles

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱工具

MinGW - Minimalist GNU for Windows

MinGW - Minimalist GNU for Windows

這個專案正在遷移到osdn.net/projects/mingw的過程中,你可以繼續在那裡關注我們。 MinGW:GNU編譯器集合(GCC)的本機Windows移植版本,可自由分發的導入函式庫和用於建置本機Windows應用程式的頭檔;包括對MSVC執行時間的擴展,以支援C99功能。 MinGW的所有軟體都可以在64位元Windows平台上運作。

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

EditPlus 中文破解版

EditPlus 中文破解版

體積小,語法高亮,不支援程式碼提示功能

Atom編輯器mac版下載

Atom編輯器mac版下載

最受歡迎的的開源編輯器

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境