HuggingFace開源大模型排行榜,又被屠榜了。
前排被清一色的SOLAR 10.7B微調版本佔據,把幾週之前的各種Mixtral 8x7B微調版本擠了下去。
SOLAR大模型什麼來頭?
相關論文剛上傳到ArXiv,來自韓國公司Upstage AI,使用了新的大模型擴充方法depth up-scaling(DUS)。
簡單來說就是兩隻7B羊駝掐頭去尾,一隻砍掉前8層,一只砍掉後8層。
剩下兩個24層縫合在一起,第一個模型的第24層與第二個模型的第9層拼接,最後變成新的48層10.7B大模型。
論文聲稱新方法超過傳統擴展方法如MoE,而且可以與沿用基礎大模型完全相同的基礎設施。
不需要門控網路等附加模組,針對MoE優化訓練框架了,也不需要自訂CUDA內核來快速推理,可以無縫整合到現有方法中,同時保持高效。
團隊選擇7B規模最強的單體大模型Mistral 7B作為底材,用新方法拼接起來,再超越原版以及MoE版。
同時,經過對齊的Instruct版本也超越對應的MoE Instruct版本。
將縫合進行到底
為什麼是這種拼接方式,論文中介紹來自一種直覺。
從最簡單的擴展方式開始,也就是把32層的基礎大模型重複兩次,變成64層。
這樣做的好處是不存在異質性,所有層都來自基礎大模型,但第32層和第33層(與第1層相同)的接縫處有較大的「層距離」(layer distance)。
之前有研究表明,Transformer不同層做不同的事,如越深的層擅長處理越抽象的概念。
團隊認為層距離過大可能妨礙模型有效利用預訓練權重的能力。
一個潛在的解決方案是犧牲中間層,從而減少接縫處的差異,DUS方法就從這裡誕生。
根據性能與模型尺寸的權衡,團隊選擇從每個模型中刪除8層,接縫處從32層連第1層,變成了24層連第9層。
簡單拼接後的模型,效能一開始還是會低於原版基礎模型,但經過繼續預訓練可以快速恢復。
在指令微調階段,除了使用開源資料集,還製作了數學強化資料集,對齊階段使用DPO。
最後一步,把使用不同資料集訓練的模型版本加權平均,也是把縫合進行到底了。
有網友質疑測試資料外洩的可能性。
團隊也考慮到這一點,在論文附錄中專門報告了資料污染測試結果,顯示出低水準。
最後,SOLAR 10.7B基礎模型和微調模型都以Apache 2.0協定開源。
試用過的網友回饋,從JSON格式資料中擷取資料表現不錯。
論文網址:https://arxiv.org/abs/2312.15166
以上是HuggingFace屠榜:將兩隻羊駝去掉頭尾後拼接在一起的詳細內容。更多資訊請關注PHP中文網其他相關文章!

1 前言在发布DALL·E的15个月后,OpenAI在今年春天带了续作DALL·E 2,以其更加惊艳的效果和丰富的可玩性迅速占领了各大AI社区的头条。近年来,随着生成对抗网络(GAN)、变分自编码器(VAE)、扩散模型(Diffusion models)的出现,深度学习已向世人展现其强大的图像生成能力;加上GPT-3、BERT等NLP模型的成功,人类正逐步打破文本和图像的信息界限。在DALL·E 2中,只需输入简单的文本(prompt),它就可以生成多张1024*1024的高清图像。这些图像甚至

“Making large models smaller”这是很多语言模型研究人员的学术追求,针对大模型昂贵的环境和训练成本,陈丹琦在智源大会青源学术年会上做了题为“Making large models smaller”的特邀报告。报告中重点提及了基于记忆增强的TRIME算法和基于粗细粒度联合剪枝和逐层蒸馏的CofiPruning算法。前者能够在不改变模型结构的基础上兼顾语言模型困惑度和检索速度方面的优势;而后者可以在保证下游任务准确度的同时实现更快的处理速度,具有更小的模型结构。陈丹琦 普

Wav2vec 2.0 [1],HuBERT [2] 和 WavLM [3] 等语音预训练模型,通过在多达上万小时的无标注语音数据(如 Libri-light )上的自监督学习,显著提升了自动语音识别(Automatic Speech Recognition, ASR),语音合成(Text-to-speech, TTS)和语音转换(Voice Conversation,VC)等语音下游任务的性能。然而这些模型都没有公开的中文版本,不便于应用在中文语音研究场景。 WenetSpeech [4] 是

由于复杂的注意力机制和模型设计,大多数现有的视觉 Transformer(ViT)在现实的工业部署场景中不能像卷积神经网络(CNN)那样高效地执行。这就带来了一个问题:视觉神经网络能否像 CNN 一样快速推断并像 ViT 一样强大?近期一些工作试图设计 CNN-Transformer 混合架构来解决这个问题,但这些工作的整体性能远不能令人满意。基于此,来自字节跳动的研究者提出了一种能在现实工业场景中有效部署的下一代视觉 Transformer——Next-ViT。从延迟 / 准确性权衡的角度看,

3月27号,Stability AI的创始人兼首席执行官Emad Mostaque在一条推文中宣布,Stable Diffusion XL 现已可用于公开测试。以下是一些事项:“XL”不是这个新的AI模型的官方名称。一旦发布稳定性AI公司的官方公告,名称将会更改。与先前版本相比,图像质量有所提高与先前版本相比,图像生成速度大大加快。示例图像让我们看看新旧AI模型在结果上的差异。Prompt: Luxury sports car with aerodynamic curves, shot in a

人工智能就是一个「拼财力」的行业,如果没有高性能计算设备,别说开发基础模型,就连微调模型都做不到。但如果只靠拼硬件,单靠当前计算性能的发展速度,迟早有一天无法满足日益膨胀的需求,所以还需要配套的软件来协调统筹计算能力,这时候就需要用到「智能计算」技术。最近,来自之江实验室、中国工程院、国防科技大学、浙江大学等多达十二个国内外研究机构共同发表了一篇论文,首次对智能计算领域进行了全面的调研,涵盖了理论基础、智能与计算的技术融合、重要应用、挑战和未来前景。论文链接:https://spj.scien

译者 | 李睿审校 | 孙淑娟近年来, Transformer 机器学习模型已经成为深度学习和深度神经网络技术进步的主要亮点之一。它主要用于自然语言处理中的高级应用。谷歌正在使用它来增强其搜索引擎结果。OpenAI 使用 Transformer 创建了著名的 GPT-2和 GPT-3模型。自从2017年首次亮相以来,Transformer 架构不断发展并扩展到多种不同的变体,从语言任务扩展到其他领域。它们已被用于时间序列预测。它们是 DeepMind 的蛋白质结构预测模型 AlphaFold

说起2010年南非世界杯的最大网红,一定非「章鱼保罗」莫属!这只位于德国海洋生物中心的神奇章鱼,不仅成功预测了德国队全部七场比赛的结果,还顺利地选出了最终的总冠军西班牙队。不幸的是,保罗已经永远地离开了我们,但它的「遗产」却在人们预测足球比赛结果的尝试中持续存在。在艾伦图灵研究所(The Alan Turing Institute),随着2022年卡塔尔世界杯的持续进行,三位研究员Nick Barlow、Jack Roberts和Ryan Chan决定用一种AI算法预测今年的冠军归属。预测模型图


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver CS6
視覺化網頁開發工具

禪工作室 13.0.1
強大的PHP整合開發環境

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

SublimeText3 英文版
推薦:為Win版本,支援程式碼提示!

ZendStudio 13.5.1 Mac
強大的PHP整合開發環境