#本期利用python 的pyecharts 視覺化函式庫繪製北京市歷史天氣資料,看看歷史高溫、歷史低溫分佈以及白天、夜晚的風力、風向分佈等情況,希望對大家有幫助,如有疑問或需要改進的地方可以聯絡小編。
#涉及的函式庫:
Pandas — 資料處理
Pyecharts — 資料視覺化
import pandas as pd from pyecharts.charts import Line from pyecharts.charts import Bar from pyecharts.charts import Scatter from pyecharts.charts import Pie from pyecharts.charts import EffectScatter from pyecharts.charts import Calendar from pyecharts.charts import Polar from pyecharts import options as opts import warnings warnings.filterwarnings('ignore')
#2.1 讀取資料
df_weather = pd.read_excel('./2018-2022年天气数据.xlsx')
2.2 處理最低氣溫最高氣溫資料
#df_weather_1 = df_weather.copy() df_weather_1[['最低气温','最高气温']] = df_weather_1['最低气温/最高气温'].str.split(' / ',expand=True) df_weather_1['最低气温'] = df_weather_1['最低气温'].str[:-2] df_weather_1['最高气温'] = df_weather_1['最高气温'].str[:-1] df_weather_1['最低气温'] = df_weather_1['最低气温'].astype('int') df_weather_1['最高气温'] = df_weather_1['最高气温'].astype('int')
2.3 处理日期数据
df_weather_1['日期'] = pd.to_datetime(df_weather_1['日期'],format='%Y年%m月%d日') df_weather_1['日期s'] = df_weather_1['日期'].dt.strftime('%Y/%m/%d')
def get_scatter(): scatter = ( Scatter() .add_xaxis(x_data) .add_yaxis("最低气温", y_data1) .add_yaxis("最高气温", y_data2) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), title_opts=opts.TitleOpts( title='1-2018-2022年历史温度分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ) ) )
def get_calendar(): calendar = ( Calendar() .add('', data_21, calendar_opts=opts.CalendarOpts( pos_right='5%', range_='2021', daylabel_opts=opts.CalendarDayLabelOpts(name_map='cn'), monthlabel_opts=opts.CalendarMonthLabelOpts(name_map='cn') ), ) .set_global_opts( title_opts=opts.TitleOpts( title='3-2021年历史温度分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), visualmap_opts=opts.VisualMapOpts( range_color=range_color, ) ) )
3.5 2022年夜间_白天风力分布
def get_pie(): pie = ( Pie() .add( "", [list(z) for z in zip(x_data, y_data1)], radius=["30%", "50%"], center=["30%", "55%"], ) .add( "", [list(z) for z in zip(x_data, y_data2)], radius=["30%", "50%"], center=["70%", "55%"], ) .set_global_opts( title_opts=opts.TitleOpts( title='5-2022年夜间_白天风力分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), legend_opts=opts.LegendOpts(pos_top='10%'), visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), ) )
def get_polor(): polor = ( Polar() .add("", values,type_="bar") .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), title_opts=opts.TitleOpts( title='6-2022年夜间风向分布', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), ) )
3.7 2022年白天风向分布
3.8 2018-2022年各类型天气数量
def get_bar(): bar = ( Bar() .add_xaxis(x_data) .add_yaxis("",y_data) .set_global_opts( visualmap_opts=opts.VisualMapOpts( is_show=False, range_color=range_color ), legend_opts=opts.LegendOpts(is_show=False), title_opts=opts.TitleOpts( title='8-2018-2022年各类型天气数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", ), ) )
3.9 2018-2022年每月平均最高温度
以上是Pandas+Pyecharts | 北京近五年歷史天氣資料視覺化的詳細內容。更多資訊請關注PHP中文網其他相關文章!