本期利用python 分析 雙十一美妝銷售數據,看看:
雙十一前後幾天美妝訂單數、總銷售量
各美妝品牌銷售狀況
#美妝品牌一級/二級分類佔比
#各美妝品牌價格箱型分佈狀況
各美妝品牌平均價格
美妝品牌詞雲
#等等...
##希望對大家有幫助,如有疑問或需要改進的地方可以聯絡小編。
#涉及的函式庫:
import pandas as pd from pyecharts.charts import Line from pyecharts.charts import Bar from pyecharts.charts import Scatter from pyecharts.charts import Boxplot from pyecharts.charts import Pie from pyecharts.charts import WordCloud from pyecharts import options as opts from pyecharts.commons.utils import JsCode import warnings warnings.filterwarnings('ignore')
#2.1 讀取資料
df_school = pd.read_excel('data.xlsx')
2.2 資料資訊
df.info()
2.3 筛选有销量的数据
df1 = df.copy() df1 = df1[df1['销量']>0]
def get_line1(): line1 = ( Line() .add_xaxis(x_data) .add_yaxis("", y_data, is_smooth=True) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, min_ = 1500, max_ = max(y_data), range_color=range_color ), title_opts=opts.TitleOpts( title='1-双十一前后几天美妆订单数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ) ) )
def get_bar1(): bar1 = ( Bar() .add_xaxis(x_data) .add_yaxis("", y_data,label_opts=opts.LabelOpts(position='right')) .set_global_opts( legend_opts=opts.LegendOpts(is_show=False), visualmap_opts=opts.VisualMapOpts( is_show=False, min_ = min(y_data), max_ = max(y_data), dimension=0, range_color=range_color ), title_opts=opts.TitleOpts( title='3-各美妆品牌订单数量', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ), ) .reversal_axis() )
相宜本草的销售额、销量都是最高的,美宝莲、悦诗风吟、妮维雅、欧莱雅分列第二至五位。
3.5 一级分类占比
def get_pie1(): pie1 = ( Pie() .add( "", [list(z) for z in zip(x_data, y_data)], radius=["40%", "70%"], center=["50%", "50%"], label_opts=opts.LabelOpts(formatter="{b}: {d}%",font_size=14,font_weight=500), ) .set_global_opts( title_opts=opts.TitleOpts( title='5-一级分类占比', subtitle='-- 制图@公众号:Python当打之年 --', pos_top='1%', pos_left="1%", title_textstyle_opts=opts.TextStyleOpts(color='#fff200',font_size=20) ), legend_opts=opts.LegendOpts(is_show=False) ) )
按二级分类来看,订单量前五的分别是:套装类、清洁类、面霜类、化妆水和乳液类。
3.7 二级分类销量
3.8 各美容品牌價格箱型圖片
#3.9 各美容品牌平均價格
以上是Pandas+Pyecharts | 雙十一美妝銷售數據分析視覺化的詳細內容。更多資訊請關注PHP中文網其他相關文章!