這篇文章帶給大家的內容是關於pandas修改DataFrame列名的方法介紹(程式碼範例),有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。
本文參考自:pandas 修改DataFrame 列名
原始博客針對每個DataFrame.columns中的元素做相同的修改操作
而拙作是對每個元素做不同操作的生搬硬套,請大家不吝賜教
提出問題
存在一個名為dataset的DataFrame
>>> dataset.columns Index(['age', 'job', 'marital', 'education', 'default', 'housing', 'loan', 'contact', 'month', 'day_of_week', 'duration', 'campaign', 'pdays', 'previous', 'poutcome', 'emp.var.rate', 'cons.price.idx', 'cons.conf.idx', 'euribor3m', 'nr.employed', 'y'], dtype='object')
現在, 我要將其columns
名字改為:
>>> new_columns Index(['age_0', 'job_1', 'marital_2', 'education_3', 'default_4', 'housing_5', 'loan_6', 'contact_7', 'month_8', 'day_of_week_9', 'duration_10', 'campaign_11', 'pdays_12', 'previous_13', 'poutcome_14', 'emp.var.rate_15', 'cons.price.idx_16', 'cons.conf.idx_17', 'euribor3m_18', 'nr.employed_19', 'y_20'], dtype='object')
該如何操作?
解決
一.透過DataFrame.columns類別的自身屬性修改:
1.無腦賦值直接修改
>>> # 先解决`new_columns`的推导问题 >>> # 列表推导 >>> new_columns_list = [column_str+'_'+str(i) for i ,column_str in enumerate(dataset.columns)] >>> # 类型转换 >>> new_columns = pd.core.indexes.base.Index(new_columns_list) >>> dataset.columns = new_columns
2.透過.map(mapper, na_action=None)
函數來修改
>>> # 注:mapper 多运用 lambda 表达式 >>> # 但我似乎没有找到在 lambda 表达式中改变两个值的方法 >>> # 所以只能蹩脚地用一个全局变量i, 和映射函数mapper() >>> # 希望大家能帮我找到方法 >>> i = 0 >>> def mapper(x): # 映射函数即 mapper global i x += '_' + str(i) i += 1 return x >>> dataset.columns.map(mapper)
3.參考部落格用到了 DataFrame.columns.str
物件
用help(DataFrame.columns.str)
翻遍了文檔,
也沒能找到可以被我拿來套用的方法, 想著抽時間把這段文檔翻譯一下
二.透過DataFrame.rename()函數來修改
1.暴力字典法(好處:可以只修改特定的列)
>>> # 此处先用字典推导法 >>> new_dict = { key:key+'_'+str(i) for i, key in enumerate(dataset.columns) } >>> dataset.rename(columns=new_dict, inplace=True)
2.映射修改法
>>> # 原博文依然用到了 lambda 表达式 >>> # 我就再生搬硬套一次, 把上面的复制过来 >>> # 蹩脚地用一个全局变量i, 和映射函数mapper() >>> i = 0 >>> def mapper(x): # 映射函数即 mapper global i x += '_' + str(i) i += 1 return x dataset.rename(columns=mapper, inplace=True)
稍微總結一下: 字典推導和列表推導的使用方法很類似, 最大的差異是選擇中括號還是大括號
以上是pandas修改DataFrame列名的方法介紹(程式碼範例)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

兩小時內可以學到Python的基礎知識。 1.學習變量和數據類型,2.掌握控制結構如if語句和循環,3.了解函數的定義和使用。這些將幫助你開始編寫簡單的Python程序。

如何在10小時內教計算機小白編程基礎?如果你只有10個小時來教計算機小白一些編程知識,你會選擇教些什麼�...


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Dreamweaver Mac版
視覺化網頁開發工具

EditPlus 中文破解版
體積小,語法高亮,不支援程式碼提示功能

Atom編輯器mac版下載
最受歡迎的的開源編輯器

VSCode Windows 64位元 下載
微軟推出的免費、功能強大的一款IDE編輯器

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)