ChatGPT剛發布的時候,給了我們太多的震撼,模型在對話上的表現實在是太像人類了,以至於產生了語言模型具有「思考能力」的錯覺。
不過在深入了解語言模型之後,研究人員們也逐漸發現了,基於高機率語言模式的再現與期望中的「通用人工智慧」還有很大差距。
在目前的大多數研究中,大型語言模型主要是在特定提示的引導下生成思維鏈來執行推理任務,沒有考慮人類的認知框架,使得語言模型解決複雜推理問題的能力與人類之間仍然存在著顯著的差距。
人類在面對複雜的推理難題時,通常會使用各種認知能力,並且需要與工具、知識和外部環境資訊的各個方面進行交互,那語言模型能不能模擬人類的思維流程來解決複雜問題呢?
答案當然可以!首個模擬人類認知處理框架的模型OlaGPT來了!
論文連結:https://arxiv.org/abs/2305.16334
程式碼連結:https://www.php.cn/link/ 73a1c863a54653d5e184b790fee14754
OlaGPT包括多個認知模組,包括注意力、記憶、推理、學習,以及相應的調度和決策機制;受人類主動學習啟發,框架中還包括一個學習單元來記錄之前的錯誤和專家意見,並動態參考來提升解決類似問題的能力。
文中也概述了人類解決問題的常見有效推理框架,並相應地設計了思維鏈(CoT)模板;也提出了一個全面的決策機制,可以最大限度地提高模型的準確性。
在多個推理資料集上進行了嚴格評估後得到的實驗結果表明,OlaGPT超越了先前最先進的基準,證明了其有效性。
模擬人類的認知
目前的語言模型與期望中的通用人工智慧還有很大差距,主要表現為:
#1. 在某些情況下生成的內容毫無意義,或者偏離了人類的價值偏好,甚至會給出一些非常危險的建議,目前的解決方案是引入人類反饋的強化學習(RLHF)對模型輸出進行排序。
2. 語言模型的知識僅限於在訓練資料中明確提到的概念和事實。
在面對複雜問題時,語言模型也無法像人類一樣適應變化的環境、利用現有的知識或工具、反思歷史教訓、分解問題,以及使用人類在長期進化中總結出的思考模式(如類比、歸納推理和演繹推理等)來解決問題。
不過,讓語言模型模擬人腦處理問題的過程還有許多系統難題:
1. 如何系統地模仿和編碼人類認知框架中的主要模組,同時以可實現的方式根據人類的通用推理模式進行調度?
2. 如何引導語言模型像人類一樣進行主動學習,即從歷史錯誤或專家對困難問題的解決方案中學習和發展?
雖然重新訓練模型對修正後的答案進行編碼可能是可行的,但顯然成本很高且不靈活。
3. 如何讓語言模型靈活地利用人類演化出的各種思考模式,進而提升其推理表現?
一個固定的、通用的思考模式很難適應不同問題,就像人類在面對不同類型的問題時,通常會靈活地選擇不同的思考方式,如類比推理、演繹推理等。
OlaGPT
OlaGPT是一個模擬人類思維的問題解決框架,可以增強大型語言模型的能力。
OlaGPT借鑒了認知架構(cognitive architecture)理論,把認知框架的核心能力建模為注意力(attention)、記憶(memory)、學習(learning)、推理(reasoning)、行動選擇(action selction)。
研究人員根據具體實現的需要對該框架進行了微調,並提出了一個適合語言模型解決複雜問題的流程,具體包括六個模組:意圖增強模組(注意力)、記憶模組(記憶)、主動學習模組(學習)、推理模組(推理)、控制器模組(行動選擇)和投票模組。
意圖增強(Intention Enhance)
#注意力是人類認知的一個重要組成部分,識別出相關的資訊並過濾掉不相關的數據。
同樣地,研究人員為語言模型設計了相應的注意力模組,即意圖增強,旨在提取最相關的信息,並在用戶輸入和模型的語言模式之間建立更強的關聯,可以被看作是一個從使用者表達習慣到模型表達習慣的最佳化轉換器。
首先透過特定的提示詞提前獲得LLMs的問題類型,然後重構提問的方式。
例如在問題的開頭加上一句「Now give you the XX(問題類型),question and choices:」;為了方便分析,提示中還需要加入「 The answer must end with JSON format: Answer: one of options[A,B,C,D,E].”
從結果可以看出:
1. SC(self-consistency)的性能優於GPT-3.5-turbo,表明在一定程度上採用集成方法確實有助於提高大規模模型的有效性。
2. 文中提出方法的表現超過了SC,在一定程度上證明了思考模板策略的有效性。
不同思維模板的答案表現出相當大的差異,在不同的思維模板下進行投票,最終會比簡單地進行多輪投票產生更好的結果。
3. 不同思考模板的效果是不同的,循序漸進的解決方案可能更適合推理型問題。
4. 主動學習模組的表現明顯優於零樣本方法。
把具有挑戰性的案例當作筆記庫的一部分,利用隨機、檢索和組合清單可以提高效能,這是一種可行的策略。
5. 不同的檢索方案在不同的資料集上有不同的效果,總的來說,組合(combine)策略的效果更好。
6. 文中方法明顯優於其他方案,這得益於整體框架的合理設計,包括主動學習模組的有效設計;思維模板實現了對不同模型的適應,不同思維模板下的結果是不同的;控制器模組起到了很好的控製作用,選擇了與所需內容比較匹配的內容;投票模組設計的不同思維模板的集成方式是有效的。
參考資料:
https://www.php.cn/link/73a1c863a54653d5e184b790fee14754
#以上是首個模擬人類認知的思考架構OlaGPT:六大模組增強語言模型,推理能力最高提升85%的詳細內容。更多資訊請關注PHP中文網其他相關文章!

利用“設備” AI的力量:建立個人聊天機器人CLI 在最近的過去,個人AI助手的概念似乎是科幻小說。 想像一下科技愛好者亞歷克斯(Alex)夢見一個聰明的本地AI同伴 - 不依賴

他們的首屆AI4MH發射於2025年4月15日舉行,著名的精神科醫生兼神經科學家湯姆·因斯爾(Tom Insel)博士曾擔任開幕式演講者。 Insel博士因其在心理健康研究和技術方面的傑出工作而聞名

恩格伯特說:“我們要確保WNBA仍然是每個人,球員,粉絲和公司合作夥伴,感到安全,重視和授權的空間。” anno

介紹 Python擅長使用編程語言,尤其是在數據科學和生成AI中。 在處理大型數據集時,有效的數據操作(存儲,管理和訪問)至關重要。 我們以前涵蓋了數字和ST

潛水之前,一個重要的警告:AI性能是非確定性的,並且特定於高度用法。簡而言之,您的里程可能會有所不同。不要將此文章(或任何其他)文章作為最後一句話 - 目的是在您自己的情況下測試這些模型

建立杰出的AI/ML投資組合:初學者和專業人士指南 創建引人注目的投資組合對於確保在人工智能(AI)和機器學習(ML)中的角色至關重要。 本指南為建立投資組合提供了建議

結果?倦怠,效率低下以及檢測和作用之間的差距擴大。這一切都不應該令任何從事網絡安全工作的人感到震驚。 不過,代理AI的承諾已成為一個潛在的轉折點。這個新課

直接影響與長期夥伴關係? 兩週前,Openai提出了強大的短期優惠,在2025年5月底之前授予美國和加拿大大學生免費訪問Chatgpt Plus。此工具包括GPT-4O,A A A A A


熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

Atom編輯器mac版下載
最受歡迎的的開源編輯器

MantisBT
Mantis是一個易於部署的基於Web的缺陷追蹤工具,用於幫助產品缺陷追蹤。它需要PHP、MySQL和一個Web伺服器。請查看我們的演示和託管服務。

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用