由於幾乎每個行業的企業都將人工智慧(AI)技術整合到他們的硬體和軟體產品中,機器學習(ML)輸入和輸出正變得越來越廣泛地可供客戶使用。這自然引起了惡意行為者的注意。
HiddenLayer的執行長ChristopherSestito談到了機器學習安全注意事項以及企業應該擔心的相關威脅。
很少有企業專注於保護他們的機器學習資產,更少的企業將資源分配給機器學習安全。造成這種情況的原因有很多,包括競爭的預算優先事項、人才稀缺,以及直到最近都缺乏針對此問題的安全產品。
在過去的十年中,我們看到每個行業都以前所未有的方式採用人工智慧/機器學習,以應對每個可用資料的用例。優勢已得到證實,但正如我們在其他新技術中看到的那樣,它們很快就成為惡意行為者的新攻擊面。
隨著機器學習操作的進步,資料科學團隊在有效性、效率、可靠性和可解釋性方面正在建立更成熟的人工智慧生態系統,但安全性尚未優先考慮。對於企業企業來說,這不再是一條可行的道路,因為攻擊機器學習L系統的動機很明確,攻擊工具可用且易於使用,並且潛在目標正以前所未有的速度增長。
隨著機器學習模型被整合到越來越多的生產系統中,它們正在硬體和軟體產品、Web應用程式、行動應用程式等領域向客戶展示。這種趨勢通常被稱為“邊緣人工智慧”,它為我們每天使用的所有技術帶來了令人難以置信的決策能力和預測能力。向越來越多的最終用戶提供機器學習同時將這些相同的機器學習資產暴露給威脅參與者。
未透過網路公開的機器學習模型也面臨風險。可以透過傳統的網路攻擊技術存取這些模型,為對抗性機器學習機會鋪路。一旦威脅參與者獲得存取權限,他們就可以使用多種類型的攻擊。推理攻擊試圖映射或「反轉」模型,從而能夠利用模型的弱點、篡改整體產品的功能或複製和竊取模型本身。
人們已經看到了這種攻擊安全供應商繞過防毒或其他保護機制的真實例子。攻擊者還可以選擇毒化用於訓練模型的數據,以誤導系統學習不正確,並使決策有利於攻擊者。
雖然需要防禦所有對抗性機器學習攻擊類型,但不同的企業將有不同的優先順序。利用機器學習模型識別詐欺交易的金融機構將高度關注防禦推理攻擊。
如果攻擊者了解詐欺偵測系統的優勢和劣勢,他們可以使用它來改變他們的技術以不被發現,完全繞過模型。醫療保健企業可能對數據中毒更敏感。醫學領域是最早使用其海量歷史資料集透過機器學習預測結果的採用者。
資料中毒攻擊可能導致誤診、改變藥物試驗結果、歪曲患者群體等。安全企業本身目前正專注於機器學習繞過攻擊,這些攻擊被積極用於部署勒索軟體或後門網路。
如今能給首席資訊安全長(CISO)的最佳建議是接受我們已經在新興技術中學到的模式。就像我們在雲端基礎架構方面的進步一樣,機器學習部署代表了一個新的攻擊面,需要專門的防禦。使用Microsoft的Counterfit或IBM的Adversarial Robustness Toolbox等開源攻擊工具,進行對抗性機器學習攻擊的門檻每天都在降低。
另一個主要考慮因素是,其中許多攻擊並不明顯,如果不尋找它們,可能無法理解它們正在發生。作為安全從業者,已經習慣了勒索軟體,這清楚地表明一個企業受到了攻擊,資料被鎖定或被盜。對抗性機器學習攻擊可以客製化為在更長的時間內發生,並且有些攻擊(例如資料中毒)可能是一個較慢但具有永久性破壞性的過程。
以上是機器學習創造新的攻擊面,需要專門的防禦的詳細內容。更多資訊請關注PHP中文網其他相關文章!